0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
SecVanet: provably secure authentication protocol for sending emergency events in VANET
نویسندگان :
Seyed Amir Mousavi
1
Mohammad Sadeq Sirjani
2
Seyyed Javad Bozorg zadeh Razavi
3
Morteza Nikooghadam
4
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
4- دانشگاه امام رضا (ع)
کلمات کلیدی :
Authentication،Privacy،Key agreement،VANET،Scyther Tool
چکیده :
Recently, the number of accidents resulting in irreparable damages like death has risen due to the increased number of vehicles worldwide. Vehicular ad hoc network (VANET) is a new technology for enhancing road safety, reducing traffic load, and providing emergency services. Vehicles can send warnings in a network to announce accidents and seek help from emergency vehicles. Security and privacy are now significant concerns in developing vehicular ad hoc networks despite the many advantages of VANET. The communication channel in this network is public and insecure, so there is concern about eavesdropping, message manipulation, and impersonation, which creates significant risks. For this reason, a safe and efficient protocol is proposed in this article to ensure data security in VANET. The security of the proposed protocol has been proven by Scyther tool. The security analysis performed on the protocol also shows that the proposed protocol is resistant to many attacks and meets various security requirements. We also evaluated the performance of the proposed protocol in terms of computational complexity and showed that the proposed scheme has less computational complexity than similar schemes.
لیست مقالات
لیست مقالات بایگانی شده
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
طبقهبندی ترافیک رمز مبتنی بر یادگیری ماشین
افسانه معدنی - شقایق نادری - حسین قرایی
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
Armin Pishehvar - Eghbal Mansoori - Abbas Mehrbaniyan - Reza Tahmasebi
پیشبینی فضایی–زمانی و مقایسه ریسک تب دنگی با استفاده از مدلهای یادگیری عمیق LSTM و GRU و مدل یادگیری ماشین Random Forest بر پایه مؤلفههای اقلیمی و مکانی
محمد بابائی - نجمه نیسانی سامانی
Reinforced Detection: Deep Reinforcement Learning for Binary VoIP Classification in Encrypted Traffic
Mohsen Rajabpour - Mohammadmoein Asefi - Siavash Khorsandi
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2