0% Complete
فارسی
Home
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Authors :
Armin Salimi-badr
1
Mohammad Hashemi
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
Keywords :
Parkinson's disease، gait cycle، Long-Short Term Memory (LSTM)، wearable sensors، biomedical time-series classification
Abstract :
Early detection of chronic diseases like Parkinson's Disease (PD), is necessary for effective medical treatments. In this paper, a neural approach based on using LSTM neural networks is proposed to diagnose patients suffering from PD. In this study, it is shown that the temporal patterns of the gait cycle are different for healthy persons and patients. Therefore, by using a recurrent structure like LSTM, able to analyze the dynamic nature of the gait cycle, the proposed method extracts the temporal patterns to diagnose patients from healthy persons. Utilized data to extract the temporal shapes of the gait cycle are based on changing vGRF, measured by 16 sensors placed in the soles of shoes worn by each subject. To reduce the number of data dimensions, the sequences of corresponding sensors placed in different feet (left and right) are combined by subtraction. This method analyzes the temporal pattern of time-series collected from different sensors, without extracting special features representing statistics of different parts of the gait cycle. Finally, by recording and presenting data from 10 seconds of subject walking, the proposed approach can diagnose the patient from healthy persons with an average accuracy of 97.66%, and the total F1-score equal to 97.78%.
Papers List
List of archived papers
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
آرتمیا: پروتکل مسیریابی مبتنی بر انجمن و آگاه به نظم تماس در شبکة اجتماعی متحرک تأخیرپذیر
سعید مرادی - جمشید باقرزاده محاسفی
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
Movable Antenna Design for UAV-Aided Federated Learning via Deep Reinforcement Learning
MOHSEN Ahmadzadeh - Saeid Pakravan - Ghosheh Abed Hodtani
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
more
Samin Hamayesh - Version 42.3.1