0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Authors :
Seyedeh Niusha Motevallian
1
Seyed Mohammad Hossein Hasheminejad
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Recommender Systems, Cold Start, Graph Neural Network, GraphSAGE, Clustering
Abstract :
With the growing volume of information being expanded by product and service providers, recommender systems have become a tool to prevent information overload. One of the most popular types of recommender systems is collaborative filtering. The issue of user cold start is the main challenge in this approach. Cold start means the lack of information to predict ratings of a user accurately. Because the user's prior experiences in the system are essential in trusting the recommendations, making the proper recommendations is very important in the early stages of interaction. In this paper, the aim is to solve the problem of partial user cold start by gathering the information of the trust network and users ratings. In this approach, the trust network information and user ratings are first aggregated by the GraphSAGE neural network algorithm to extract the user's hidden features vector. Then, user ratings are predicted in each cluster of users. This method, which has been evaluated on two data sets, in the best case, improves the accuracy of predicting non-existing ratings for partially cold start users in terms of mean absolute error by 0.9% and root mean squared error by 1.1% compared to previous methods. Also, due to the inductivity of the GraphSAGE algorithm, if a new user (a user who was not available in the data set during the training process) enters, there is no need to retrain the model, and its embedding vector is created with the existing model.
Papers List
List of archived papers
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
Improving Long-Term Engagement of Insurance Brokerages by Providing Gamified Configurations Based on The Delphi Method
Hosein Bayati - Fattaneh Taghiyareh - Sahand Hashemi
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
کشف برخط تقلب پیشنهاد ساختگی (Bid-Shielding) در مناقصه و مزایدههای الکترونیکی هلندی با رویکرد تحلیل شبکه اجتماعی
فاطمه الثلایا - دکتر سید علیرضا هاشمی گلپایگانی فاطمه الثلایا - سید علیرضا هاشمی گلپایگانی -
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
more
Samin Hamayesh - Version 42.3.1