0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Authors :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
Keywords :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
Abstract :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
Papers List
List of archived papers
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
طرحی برای تبدیل نمودارهای رفتاری BPMN به نمودار UML و تولید کد از آن
مهدیس صفری - احمد عبدالله زاده بارفروش
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
Silicon photonic microring resonators: A Novel optical router based on Negative-First routing algorithm
Negin Bagheri Renani - Elham Yaghoubi
more
Samin Hamayesh - Version 42.0.3