0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Authors :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
Keywords :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
Abstract :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
Papers List
List of archived papers
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
Mohsen Mahmoudi - Fattaneh Taghiyareh - Yasamin Akhavein - Elnaz Ghorbani
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
تحلیل کتابسنجی از مقالات حوزه دوقلوهای دیجیتال
فاطمه مکی زاده - سارا صراف - مصطفی شیرالی
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
شناسایی حملات فیشینگ با استفاده از الگوریتم عقاب آتشین و شبکه عصبی کانولوشن
علی کوشاری - مهدی فرتاش
دستهبندی متون خبری فارسی با یادگیری فعال
مینا طباطبائی - دکتر سعیده ممتازی
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
بهبود کارایی بارسپاری در شبکه های سلولی با استفاده از ارتباطات مشارکتی در لایه MAC
نبیل الراشدی - رسول صادقی - وائل حسین اللامی - مهدی حمیدخانی
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
more
Samin Hamayesh - Version 42.5.2