0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Authors :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
Keywords :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
Abstract :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
Papers List
List of archived papers
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
Romina Etezadi - Mehrnoush Shamsfard
شناسایی حملات رومینگ تلفنهمراه با استفاده از یادگیری ماشین
سعیده سیف الدین - سجاد شیرعلی شهرضا
سنجش داده محور ارزش ویژه برند کارکنان
علیرضا برادران - سپیده نصیری
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
Business Process Improvement Challenges: A Systematic Literature Review
Hanieh Kashfi - Fereidoon Shams Aliee
From Faces to Words: An Efficient Persian Visual Lip Reading
Mana Amini - Sajjad Aemmi - Azadeh Ashouri - Reza Akhoundzadeh - Kourosh Hassanzadeh - Mohammad Reza Mohammadi
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
Sustainability analysis and improvement of model driven engineering and model transformation languages
Kevin Lano - Shekoufeh Kolahdouz Rahimi
چارچوب مسیریابی آگاه از اعتماد تطبیقی مبتنی بر گراف زمانی برای ایمنسازی پروتکل RPL در شبکههای اینترنت اشیاء پویا
زهره شعاعی - رسول اسماعیلی فرد - رضا جاویدان
more
Samin Hamayesh - Version 42.5.2