0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Authors :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
Keywords :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
Abstract :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
Papers List
List of archived papers
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
An integrated approach for estimating software cost estimation using Adaptive Neuro-Fuzzy Inference System and the Grey Wolf Optimization algorithm
Maryam Karimi - Taghi Javdani Gandomani - Mahdi Mosleh
Sustainability analysis and improvement of model driven engineering and model transformation languages
Kevin Lano - Shekoufeh Kolahdouz Rahimi
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
more
Samin Hamayesh - Version 41.3.1