0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
Authors :
Omid Mosalmani
1
Mohammad Javad Rashti
2
Seyed Enayat Alavi
3
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
Keywords :
Explainable AI،Prompt Engineering،Large Language Models،Autonomous Vehicles،Textual Explanation
Abstract :
With the increasing utilization of autonomous vehicles, the transparency and explainability of their decisions have become crucial for gaining user trust and enhancing road safety. Current textual explanation methods rely on limited datasets, leading to repetitive and superficial explanations. This research presents a hybrid system where the ADAPT decision-making model is used to predict driving actions, and its attention maps serve as an interface between visual data and the explanation module. Subsequently, large language models, from the Gemini and GPT families, receive the final decision, the attention map, and a carefully designed prompt to generate concise and understandable textual explanations. The primary innovation of this approach lies in combining the decision-making model with LLMs, leveraging their extensive knowledge beyond the constraints of training data to enable the generation of more precise and diverse explanations. The system is evaluated on the BDD-X dataset and measured against standard captioning metrics including BLEU-4, METEOR, ROUGE-L, CIDEr-D, and SPICE. The evaluation results indicate the superiority of explanation outputs in our system, compared to the baseline ADAPT, particularly in multi-reference scenarios, providing more fluent and contextually rich explanations. For instance, the output acquired from Gemini 2.5 Pro model achieves a METEOR score of approximately 19.45, a significant improvement of about 28 percent compared to 15.2 for ADAPT. Furthermore, supplementary experiments show that using a contour representation of the attention map and fine-tuning the models lead to increased visual-textual consistency and result stability. In summary, by linking the visual attention of the decision-making model to the linguistic capabilities of LLMs, this research takes a step toward developing more explainable and trustworthy autonomous vehicles.
Papers List
List of archived papers
تشخیص خودکار اختلال عروقی ماکولا با عنوان عروق گسترش یافته در تصاویر آنژیوگرافی حاصل از تصویربرداری OCTA
راضیه گنجی - دکتر محسن ابراهیمی مقدم - دکتر رامین نوری نیا
Benchmarking Embedding Models for Persian-Language Semantic Information Retrieval
Mahmood Kalantari - Mehdi Feghhi - Nasser Mozayani
Load Balancing in Software-Defined Networks Using Multi-Level Thresholds and Hybrid Switch Migration Strategies
Alireza Karimi - Mohammad yousef Darmani
Cryptanalysis of two password authenticated key exchange schemes
Mohammad Ali Poorafsahi - Hamid Mala
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
تشخیص و جلوگیری از حمله انعکاسی/تقویتی SSDP در شبکه های نرم افزار محور مبتنی بر 4P با استفاده از الگوریتم های یادگیری ماشین
امیرحسین کرمی - رضا محمدی
تحلیل داده های شهری با رویکرد هوش تجاری
دریا چراغی
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
more
Samin Hamayesh - Version 42.5.2