0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
Authors :
SeyedMohammadReza AhmadEnjavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
Keywords :
Physics-Informed Neural Networks،Tasmanian Devil Optimizer،Optimization for Deep Learning
Abstract :
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving forward and inverse partial differential equations (PDEs), yet their performance often deteriorates in stiff, multi-scale, or high-frequency regimes due to spectral bias, loss imbalance, and local optimization pathologies. While Self-Adaptive PINNs (SA-PINNs) mitigate error concen tration by dynamically adjusting residual weights, their correc tive power remains constrained by gradient-based optimizers that stagnate in rugged landscapes. To address this gap, we introduce a co-evolutionary framework that integrates SA-PINNs with the Tasmanian Devil Optimizer (TDO), a recent population based metaheuristic. In the proposed TDO-SA-PINN, adaptive weights reshape the loss landscape while a diverse swarm of candidate networks performs global, gradient-free exploration. This dual mechanism simultaneously targets spectral bias and optimizer-induced stagnation, and naturally yields an ensemble that encodes predictive uncertainty. Extensive experiments on canonical PDE benchmarks demonstrate that TDO-SA-PINNs achieve lower error and more reliable convergence compared to standard PINNs trained with ADAM/LBFGS, adaptive PINN variants, and deep ensembles. The results highlight the potential of co-evolutionary population search as a scalable and effective complement to adaptive physics-informed learning frameworks.
Papers List
List of archived papers
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
Olya Rezaeian - Dr ُSeyedhamidreza Shahabi Haghighi - Dr Jamal Shahrabi
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
مروری بر الگوریتمهای انتخاب مشتری در یادگیری فدرال
عطیه منعمی بیدگلی - رضا مهدوی
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
شناسایی حملات رومینگ تلفنهمراه با استفاده از یادگیری ماشین
سعیده سیف الدین - سجاد شیرعلی شهرضا
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
Secure Web-Based Control of ROS 1 Robots Using AES-256-GCM Encryption and LLM Integration
Ali Godarzvand chegini - Mohammad Arabian
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
more
Samin Hamayesh - Version 42.5.2