0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
Authors :
SeyedMohammadReza AhmadEnjavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
Keywords :
Physics-Informed Neural Networks،Tasmanian Devil Optimizer،Optimization for Deep Learning
Abstract :
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving forward and inverse partial differential equations (PDEs), yet their performance often deteriorates in stiff, multi-scale, or high-frequency regimes due to spectral bias, loss imbalance, and local optimization pathologies. While Self-Adaptive PINNs (SA-PINNs) mitigate error concen tration by dynamically adjusting residual weights, their correc tive power remains constrained by gradient-based optimizers that stagnate in rugged landscapes. To address this gap, we introduce a co-evolutionary framework that integrates SA-PINNs with the Tasmanian Devil Optimizer (TDO), a recent population based metaheuristic. In the proposed TDO-SA-PINN, adaptive weights reshape the loss landscape while a diverse swarm of candidate networks performs global, gradient-free exploration. This dual mechanism simultaneously targets spectral bias and optimizer-induced stagnation, and naturally yields an ensemble that encodes predictive uncertainty. Extensive experiments on canonical PDE benchmarks demonstrate that TDO-SA-PINNs achieve lower error and more reliable convergence compared to standard PINNs trained with ADAM/LBFGS, adaptive PINN variants, and deep ensembles. The results highlight the potential of co-evolutionary population search as a scalable and effective complement to adaptive physics-informed learning frameworks.
Papers List
List of archived papers
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
Distributed Deep Reinforcement Learning for Energy-Efficient and Low-Latency Load Balancing in Mobile Edge Computing
Pooria Azizi - Siavash Khorsandi
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Two Novel Designs of Efficient Single-Bit Comparators in QCA Technology with Ultra-Low Energy Dissipation
Shobeir Fayazi - Hatam Abdoli
more
Samin Hamayesh - Version 42.5.2