0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Detection of Backdoor Attacks in Neural Networks Using Input Optimization
Authors :
Parsa Hashemi Khorsand
1
Ahmad Nickabadi
2
1- Amirkabir University of Technology (Tehran Polytechnic)
2- Amirkabir University of Technology (Tehran Polytechnic)
Keywords :
backdoor attacks،adversarial robustness،backdoor detection،model contamination detection،input optimization،regularization
Abstract :
This paper presents a clean-data-free framework for detecting backdoor attacks in neural networks via input optimization. We introduce two complementary strategies. First, joint input optimization with a cleanliness detector: for each label, we optimize an input that simultaneously (i) maximizes the target-label logit on the suspected model and (ii) maintains in-domain naturalness according to an auxiliary diagnostic model; the resulting patterns are then inspected for trigger-like artifacts. Second, input optimization with the largest feasible regularization coefficient: for each label, we find the largest feasible regularization coefficient that still attains a preset confidence threshold, forming a per-class signature vector; Median Absolute Deviation (MAD) is then used to flag outlier labels as compromised. On MNIST, our framework achieves 89.5 percent detection accuracy on backdoored models with 100 percent recall in poisoned-label flagging, while requiring no access to clean training data. We further compare our methods with Neural Cleanse and the Certified Backdoor Detector (CBD).
Papers List
List of archived papers
ارائه مدل هشت مولفه ای استراتژی جامع هوش مصنوعی سازمانی
محمد کاظم صیادی - نیلوفر مرادحاصل - علیرضا یاری
Optimal control of robotic hand for rehabilitation using fractional order systems and EEG signal processing
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Masoud Shafiee
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
Open-domain question classification and completion in conversational information search
Omid Mohammadi Kia - Mahmood Neshati - Mahsa Soudi Alamdari
از داده تا تحول دیجیتال: توسعه داشبورد مدیریتی مبتنی بر دادهکاوی، علم داده و هوش تجاری برای ارتقای تصمیمگیری و بهبود عملکرد در ذوبآهن اصفهان
پدرام کیانی - یحیی غلامیان - پریناز واعظ
Reinforced Detection: Deep Reinforcement Learning for Binary VoIP Classification in Encrypted Traffic
Mohsen Rajabpour - Mohammadmoein Asefi - Siavash Khorsandi
Investigating the impact of management information systems (MIS) on organizational transparency with an emphasis on work ethics
Sadegh Balouch - Omid mehdi Ebadati
Distributed Deep Reinforcement Learning for Energy-Efficient and Low-Latency Load Balancing in Mobile Edge Computing
Pooria Azizi - Siavash Khorsandi
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
more
Samin Hamayesh - Version 42.5.2