0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Video Steganography in HEVC Using Intra-Prediction Modes
Authors :
Vahidreza Seirafian
1
Masoud Omomi
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
Keywords :
Video steganography،HEVC standard،I-frame prediction،Angle modes
Abstract :
Steganography is a security method that has been used since ancient times and has evolved as a prominent research area in electronic media with the advancement of technology and the transformation of information into digital data. Hidden data carriers can take various forms, such as text, audio, images, or videos. With the expansion of video media and advancements in areas such as increased memory capacity, processor power, and data exchange speed, video-based steganography has gained more attention. The presence of consecutive video frames and suitable space for data steganography are among the reasons for the popularity of this method. Currently, the most effective video steganography methods are based on the HEVC (High-Efficiency Video Coding) standard, which is widely used in hardware and software applications. In this paper, a method for hiding data in videos based on the HEVC standard is proposed, utilizing its features for data concealment. The proposed technique in video steganography relies on intra-prediction modes and hides the data during the encoding process using HEVC angle modes. Experimental results demonstrate that the proposed method introduces minimal visual changes compared to other methods and possesses a suitable hiding rate. Moreover, it yields acceptable results regarding the security of hidden data.
Papers List
List of archived papers
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
جانمایی توزیعشده محتوا برای ذخیرهسازی موقت در شبکههای سلولی کوچک با حضور کاربران مخرب
زهرا رشیدی - دکتر وصال حکمی - حانیه سلمانطاهری زهرا رشیدی - وصال حکمی - حانیه سلمانطاهری -
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
Exploring the Relationship Between Gameplay Log Data and Depression & Anxiety
Soroush Elyasi - Arya Varasteh Nezhad - Fattaneh Taghiyareh
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
Samin Hamayesh - Version 40.3.1