0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
ElectroCNN: Regressive CNN-based Energy Consumption Forecasting Leveraging Weather Data
Authors :
Dharmi Patel
1
Mann Patel
2
Krisha Darji
3
Rajesh Gupta
4
Sudeep Tanwar
5
Jitendra Bhatia
6
Hossein Shahinzadeh
7
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- Institute of Technology, Nirma University
7- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
Electricity،CNN،Acquired Weather Data،Energy Efficiency
Abstract :
Energy efficiency has become essential in the modern power sector. This research suggests an approach for identifying weather patterns to improve energy efficiency. ElectroCNN, which uses a Convolutional Neural Network (CNN) as its foundation, makes it easier to anticipate energy usage in a variety of meteorological scenarios. ElectroCNN modifies forecasts based on referred-to weather patterns to account for the three primary energy considerations associated with a given geographic location: industrial, commercial, and domestic. Four optimizers which are Adagrad, Adam, RMSprop, and FTRL used in the study to effectively improve prediction accuracy. In the context of model performance assessment, a stringent methodology is employed, integrating validation r2-score and validation loss curve to identify potential overfitting during the training process. Additionally, the study presents exhaustive curves for diverse optimizers such as Adagrad, Adam, RMSprop, and FTRL. These curves improve our comprehension of the model’s performance under different optimization procedures by offering a thorough insight into the way every optimizer impacts testing samples in three distinct locations.
Papers List
List of archived papers
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
Intelligent Transportation System (ITS) Using Internet of Things (IoT)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Sayyed Mohammad Reza Talakesh
more
Samin Hamayesh - Version 41.3.1