0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Authors :
Farzaneh Khajehgili-Mirabadi
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Descriptors selection،Drug discovery،QSAR modeling،Sequential Feature Selection،Support vector machine
Abstract :
Quantitative Structure-Activity Relationship (QSAR) modeling is an approach employed to predict the biological response of chemical compounds by considering their structural attributes. Classification machine learning algorithms can learn patterns and relationships between chemical structure (descriptors) and biological activity from datasets and then use this knowledge to predict active or inactive compounds. This study introduces a new approach that combines Sequential Feature Selection (SFS) with the Support Vector Machine (SVM) algorithm to select the most relevant molecular descriptors for QSAR modeling. SFS and SVM work collaboratively to identify the best subset of descriptors, resulting in improved predictive accuracy. The key steps include selecting an appropriate subset of descriptors using SFS from a larger set, SVM models are built using different subsets of descriptors, and the most accurate model is selected for final use. As shown by measuring Accuracy, Precision, Recall, and F1-score of the proposed SVM algorithm in two datasets, DKPES and PubChem, The results demonstrate the effectiveness and robustness of this approach in achieving subsets of descriptors with strong predictive capabilities.
Papers List
List of archived papers
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
more
Samin Hamayesh - Version 42.3.1