0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Authors :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
Keywords :
Suicide risk, Random forest, unbalanced data, Classification
Abstract :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
Papers List
List of archived papers
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
سیستم پیشنهاددهنده غذای سالم با استفاده از داده کاوی عادت های تغذیه ای کاربران
محمد عباسی - مریم حسینی پزوه - محمدرضا شمس
یک رویکرد سریع تحلیل و شناسایی آسیب پذیری Next-Intent در برنامه های کاربردی اندروید
زهرا کلوندی - دکتر مهدی سخائی نیا زهرا کلوندی - مهدی سخائی نیا -
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
ParsEL 1.0: Unsupervised Entity Linking in Persian Social Media Texts
Majid Asgari-bidhendi - Farzane Fakhrian - Dr Behrouz Minaei-bidgoli
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
more
Samin Hamayesh - Version 42.5.2