0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Authors :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
Keywords :
Suicide risk, Random forest, unbalanced data, Classification
Abstract :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
Papers List
List of archived papers
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
UltraLearn: Next-Generation CyberSecurity Learning Platform
Saeed Raisi - Saeid Ghasemshirazi - Ghazaleh Shirvani
Effective Design of Reversible 2×2 Vedic Multiplier With Low Cost
Mojtaba Noorallahzadeh - Mohammad Mosleh - Ali Shahidikia
A High-Speed Quantum Reversible Controlled Adder/Subtractor Circuit
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
An integrated approach for estimating software cost estimation using Adaptive Neuro-Fuzzy Inference System and the Grey Wolf Optimization algorithm
Maryam Karimi - Taghi Javdani Gandomani - Mahdi Mosleh
یک روش انتخاب ویژگی نیمهنظارتی جدید بر اساس منظمسازی هسین
دکتر راضیه شیخ پور راضیه شیخ پور -
more
Samin Hamayesh - Version 41.3.1