0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Authors :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
Keywords :
Suicide risk, Random forest, unbalanced data, Classification
Abstract :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
Papers List
List of archived papers
A Hybrid Crow Search and Penguin Optimization Algorithm (CPMM) for Efficient Cloud Workflow Scheduling
Reza Akraminejad - Farhad Kazemipour - Mozhdeh Koreh Davoodi
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
Effective Design of Reversible 2×2 Vedic Multiplier With Low Cost
Mojtaba Noorallahzadeh - Mohammad Mosleh - Ali Shahidikia
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links
Alireza M. Hosseini - Dr Abbas Mohammadi
توسعه ی کارآفرینی دیجیتال در بخش کشاورزی
شایان مظاهری - فاطمه قربانی پیرعلیدهی - فاطمه رزاقی بورخانی
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
A Graph Attention-Based Autoencoder for Critical Path Anomaly Detection in Microservices
Mahdi Naderi - Hossein Momeni - Shayan Shahini
Samin Hamayesh - Version 40.3.1