0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Authors :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
Keywords :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
Abstract :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
Papers List
List of archived papers
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
شناسایی حملات فیشینگ با استفاده از الگوریتم عقاب آتشین و شبکه عصبی کانولوشن
علی کوشاری - مهدی فرتاش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Ehsan Akefi - Hassan Khotanlou
تاثیر مدیریت دانش مشتری بر توسعه محصول جدید و نوآورانه با رویکرد مدل سازی معادلات ساختاری با استفاده از حداقل مربعات جزئی: مطالعۀ موردی شرکت کاله
دکتر آرش خسروی - سیده فاطمه حسینی - دکتر مرتضی رجب زاده آرش خسروی - سیده فاطمه حسینی - مرتضی رجب زاده -
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Targeted Vaccination for COVID-19 Using Mobile Communication Networks
Mohammadmohsen Jadidi - Pegah Moslemi - Saeed Jamshidiha - Iman Masroori - Abbas Mohammadi - Vahid Pourahmadi
پیشنهادات کالیبره شده براساس احساسات استخراج شده از متون مرتبط با آیتم ها
شیوا پارساراد - دکتر سامان هراتی زاده شیوا پارساراد - سامان هراتی زاده -
ارزیابی و برنامهریزی اجرای پیشنهادی هوش مصنوعی در صنعت پتروشیمی ایران
امین رضا انصاری - احد قائمی - سید مهدی کوچک کوثری
more
Samin Hamayesh - Version 42.5.2