0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
Authors :
Mahdi Amiri Shavaki
1
Pouria Omrani
2
Ramin Toosi
3
Mohammad Ali Akhaee
4
1- دانشکده برق و کامپیوتر دانشگاه تهران
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشکده برق و کامپیوتر دانشگاه تهران
4- دانشکده برق و کامپیوتر دانشگاه تهران
Keywords :
Graph RAG،Generative AI،LLM،Multi-hop QA،NLP
Abstract :
Multi-hop question answering (QA), which requires integrating information from multiple sources, poses significant challenges in natural language processing. Existing methods often struggle with effective retrieval across documents, leading to incomplete or inaccurate answers. Building upon Graph-based Retrieval-Augmented Generation (Graph RAG), we enhance multi-hop QA by leveraging structured knowledge graphs. Specifically, we construct individual knowledge graphs for each document, where entities are represented as nodes and the relationships between them as edges enriched with contextual properties. These individual graphs are then seamlessly integrated into a comprehensive, unified graph that captures cross-document relationships. Our method improves retrieval by utilizing vector embeddings of these graph relations, enabling more effective multi-hop reasoning across the interconnected data. To evaluate our approach, we assembled a dataset of 500 documents paired with 296 multi-hop questions requiring cross-document information retrieval. Our contributions include developing a novel graph-based retrieval mechanism that leverages vector embeddings of graph relations within the Graph RAG framework, and assembling a comprehensive dataset for multi-hop QA. Comparative experiments show that our enhanced Graph RAG method significantly outperforms the baseline in factual accuracy and semantic similarity, as measured by the RAGAS framework. Additionally, an LLM-based evaluator highlights our method's superior performance in answer comprehensiveness, empowerment, and directness.
Papers List
List of archived papers
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
کشف برخط تقلب پیشنهاد ساختگی (Bid-Shielding) در مناقصه و مزایدههای الکترونیکی هلندی با رویکرد تحلیل شبکه اجتماعی
فاطمه الثلایا - دکتر سید علیرضا هاشمی گلپایگانی فاطمه الثلایا - سید علیرضا هاشمی گلپایگانی -
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Samin Hamayesh - Version 40.3.1