0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Transition Cow Index Accuracy through CatBoost-Based Prediction of First Test-Day Milk Yield
نویسندگان :
Hoda Safaeipour
1
Sepehr Ebadi
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Transition period،machine learning،Transition Cow Index (TCI)،dairy herd management،neural networks،milk yield prediction
چکیده :
Abstract— The transition period in dairy cows, encompassing three weeks pre- and post-calving, represents a critical physiological phase that significantly impacts subsequent milk production and overall herd health. Effective herd management during this period is indirectly assessed via the Transition Cow Index (TCI), which quantifies the deviation between predicted and actual first test-day milk yield. Traditionally, TCI prediction has relied on linear or heuristic statistical methods with limited accuracy and generalizability. In recent years, machine learning (ML) approaches have emerged as powerful alternatives, offering improved precision and robustness in complex agricultural decision-making contexts. This study developed and evaluated ML-based predictive models for first test-day milk yield in subsequent lactations, thereby enabling more reliable TCI computation. A comprehensive dataset from the Vahdat Cooperative Company, Isfahan Province, Iran, comprising 345,676 cow records across 99 herds collected from 2011 to 2022, was utilized. Various ML families—including regression-based models, tree-based ensembles, kernel methods, and neural networks—were comparatively tested, and the CatBoost Tuned model was identified as the best-performing approach. The proposed method demonstrated notable gains in predictive accuracy. Compared with the cooperative’s baseline model (R² ≈ 0.30), the CatBoost Tuned model improved the explained variance to 0.40 and reduced mean absolute error by nearly 10%, from above 7 kg to 6.4 kg per cow. Importantly, when aggregated at the herd level, errors were reduced to below 1.0 kg and R² exceeded 0.86, underscoring the practical utility of the ML-based framework for large-scale TCI benchmarking and herd management optimization.
لیست مقالات
لیست مقالات بایگانی شده
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
تشخیص زودهنگام سندروم داون از روی تصاویر سونوگرافی جنین با استفاده از مدلهای عمیق پیشآموزش دیده
فائزه سادات حسینی نیا - محرم منصوری زاده - حسن ختنلو
A Data-Driven Hybrid Algorithm for 2D Path Planning via Modeling and Metaheuristic-Based Identification
Vahid Safari Dehnavi - Masoud Shafiee
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
PC-MCLD: Pose-Constrained and Multi-focal Conditioned Latent Diffusion for Person Image Synthesis
Hanieh Fazli - Reza Azmi
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2