0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification of mental states of human concentration based on EEG signal
نویسندگان :
Mehran Safari Dehnavi
1
Vahid Safari Dehnavi
2
Masoud Shafiee
3
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
EEG signal, machine learning methods, classification.
چکیده :
This paper provides a suitable method for classifying the EEG signal. In this article, a number of features are extracted from the EEG signal and by using these different features and networks, these signals are classified into three categories: relaxation, moderate concentration and high concentration. In this case, based on the amount of mental activity that has a direct effect on the EEG signal, the state of attention can be categorized. In this paper, four sensors (electrodes) are used to collect the voltage of the brain signals, then the Large Laplacian Filter is used to localize the signals, and by this method, the signals of the four sensors are converted into one signal, then the frequency of 50 Hz (City frequency) is removed using a Notch passive filter and then a wavelet filter is used to remove noise and artifacts. In this article, the diagnosis of mental states in the time domain is examined. Then, a window is determined on the measured signal and in these windows, various features are extracted and by using these features and machine learning methods, different mental states are categorized. Finally, the method used is tested on the data set and the results of the method is checked. One of the advantages of the proposed method is to reduce the number of network inputs based on PCA feature reduction method, which leads to a reduction in network volume, which is especially important in neural networks. In this article, we have tried to increase the accuracy of classification by using various features.
لیست مقالات
لیست مقالات بایگانی شده
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
Intelligent Transportation System (ITS) Using Internet of Things (IoT)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Sayyed Mohammad Reza Talakesh
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4