0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification of mental states of human concentration based on EEG signal
نویسندگان :
Mehran Safari Dehnavi
1
Vahid Safari Dehnavi
2
Masoud Shafiee
3
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
EEG signal, machine learning methods, classification.
چکیده :
This paper provides a suitable method for classifying the EEG signal. In this article, a number of features are extracted from the EEG signal and by using these different features and networks, these signals are classified into three categories: relaxation, moderate concentration and high concentration. In this case, based on the amount of mental activity that has a direct effect on the EEG signal, the state of attention can be categorized. In this paper, four sensors (electrodes) are used to collect the voltage of the brain signals, then the Large Laplacian Filter is used to localize the signals, and by this method, the signals of the four sensors are converted into one signal, then the frequency of 50 Hz (City frequency) is removed using a Notch passive filter and then a wavelet filter is used to remove noise and artifacts. In this article, the diagnosis of mental states in the time domain is examined. Then, a window is determined on the measured signal and in these windows, various features are extracted and by using these features and machine learning methods, different mental states are categorized. Finally, the method used is tested on the data set and the results of the method is checked. One of the advantages of the proposed method is to reduce the number of network inputs based on PCA feature reduction method, which leads to a reduction in network volume, which is especially important in neural networks. In this article, we have tried to increase the accuracy of classification by using various features.
لیست مقالات
لیست مقالات بایگانی شده
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
DynamicEvoStream : خوشه بندی پویای جریان داده تکاملی در زمانهای بیکاری
زهرا عمیقی - مرتضی یوسف صنعتی - میرحسین دزفولیان
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2