0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification of mental states of human concentration based on EEG signal
نویسندگان :
Mehran Safari Dehnavi
1
Vahid Safari Dehnavi
2
Masoud Shafiee
3
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
EEG signal, machine learning methods, classification.
چکیده :
This paper provides a suitable method for classifying the EEG signal. In this article, a number of features are extracted from the EEG signal and by using these different features and networks, these signals are classified into three categories: relaxation, moderate concentration and high concentration. In this case, based on the amount of mental activity that has a direct effect on the EEG signal, the state of attention can be categorized. In this paper, four sensors (electrodes) are used to collect the voltage of the brain signals, then the Large Laplacian Filter is used to localize the signals, and by this method, the signals of the four sensors are converted into one signal, then the frequency of 50 Hz (City frequency) is removed using a Notch passive filter and then a wavelet filter is used to remove noise and artifacts. In this article, the diagnosis of mental states in the time domain is examined. Then, a window is determined on the measured signal and in these windows, various features are extracted and by using these features and machine learning methods, different mental states are categorized. Finally, the method used is tested on the data set and the results of the method is checked. One of the advantages of the proposed method is to reduce the number of network inputs based on PCA feature reduction method, which leads to a reduction in network volume, which is especially important in neural networks. In this article, we have tried to increase the accuracy of classification by using various features.
لیست مقالات
لیست مقالات بایگانی شده
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
Exploring the Relationship Between Gameplay Log Data and Depression & Anxiety
Soroush Elyasi - Arya Varasteh Nezhad - Fattaneh Taghiyareh
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
شناسایی حملات فیشینگ با استفاده از الگوریتم عقاب آتشین و شبکه عصبی کانولوشن
علی کوشاری - مهدی فرتاش
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
طبقهبندی ترافیک رمز مبتنی بر یادگیری ماشین
افسانه معدنی - شقایق نادری - حسین قرایی
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1