0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Handling Data Heterogeneity in Federated Medical Images Classification
Authors :
Alireza Maleki
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
Keywords :
Federated Learning،Data Heterogeneity،Medical Image Classification،Vision Transformer،SCAFFOLD
Abstract :
Deep learning-based medical image classification has significant problems with heterogeneity in the data generated by the variability of imaging equipment, protocols, and patient populations within institutions. Federated Learning (FL) suggests a solution by allowing collaborative model training across institutions while not actually sharing sensitive patient information, thus preserving privacy. However, the decentralized data's Non-Independent and Identically Distributed (Non-IID) nature presents fundamental challenges: data heterogeneity and client drift that lower model convergence and performance. To address these challenges, we propose a novel FL framework that integrates appropriate data augmentation, Vision Transformers (ViT), and the SCAFFOLD algorithm to neutralize client drift and enhance convergence in heterogeneous settings. Our approach supports federated training across decentralized medical facilities without raw data exchange, while preserving privacy and label skew and domain adaptation robustness. With testing on the FED-ISIC2019 dataset, we achieve improved performance, such as 86.02% global accuracy and 0.9759 AUC, over baselines like FedAvg and other state-of-the-art FL algorithms. Experiments confirm the key benefits of SCAFFOLD's control variates and conservative augmentation in stabilizing training and improving minority class handling. The work extends privacy-preserving collaborative learning in healthcare, demonstrating practical utility for real-world multi-institutional deployments. Code available at https://github.com/allirezamaleki/Federated-Medical-Image-Classification
Papers List
List of archived papers
PC-MCLD: Pose-Constrained and Multi-focal Conditioned Latent Diffusion for Person Image Synthesis
Hanieh Fazli - Reza Azmi
تشخیص و جلوگیری از حمله انعکاسی/تقویتی SSDP در شبکه های نرم افزار محور مبتنی بر 4P با استفاده از الگوریتم های یادگیری ماشین
امیرحسین کرمی - رضا محمدی
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Ehsan Akefi - Hassan Khotanlou
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
طراحی سیستم پشتیبانی تجاری با استفاده از فناوری هوش مصنوعی
سجاد قطعی - زهره عربی - محمد روحی
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
more
Samin Hamayesh - Version 42.5.2