0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Handling Data Heterogeneity in Federated Medical Images Classification
Authors :
Alireza Maleki
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
Keywords :
Federated Learning،Data Heterogeneity،Medical Image Classification،Vision Transformer،SCAFFOLD
Abstract :
Deep learning-based medical image classification has significant problems with heterogeneity in the data generated by the variability of imaging equipment, protocols, and patient populations within institutions. Federated Learning (FL) suggests a solution by allowing collaborative model training across institutions while not actually sharing sensitive patient information, thus preserving privacy. However, the decentralized data's Non-Independent and Identically Distributed (Non-IID) nature presents fundamental challenges: data heterogeneity and client drift that lower model convergence and performance. To address these challenges, we propose a novel FL framework that integrates appropriate data augmentation, Vision Transformers (ViT), and the SCAFFOLD algorithm to neutralize client drift and enhance convergence in heterogeneous settings. Our approach supports federated training across decentralized medical facilities without raw data exchange, while preserving privacy and label skew and domain adaptation robustness. With testing on the FED-ISIC2019 dataset, we achieve improved performance, such as 86.02% global accuracy and 0.9759 AUC, over baselines like FedAvg and other state-of-the-art FL algorithms. Experiments confirm the key benefits of SCAFFOLD's control variates and conservative augmentation in stabilizing training and improving minority class handling. The work extends privacy-preserving collaborative learning in healthcare, demonstrating practical utility for real-world multi-institutional deployments. Code available at https://github.com/allirezamaleki/Federated-Medical-Image-Classification
Papers List
List of archived papers
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
مقایسه اثربخشی و سودمندی معیارهای پوشش آزمون نرم افزارهای مبتنی بر گرامر
عطیه منعمی بیدگلی
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
Blockchain-based Secure UAV-assisted Battlefield Operation underlying 5G
Dhruvi Pancholi - Nilesh Kumar Jadav - Sudeep Tanwar - Deepak Garg - S. Mohammadali Zanjani
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
Olya Rezaeian - Dr ُSeyedhamidreza Shahabi Haghighi - Dr Jamal Shahrabi
To Kill a Mockingbird: Cryptanalysis of an Authenticated Key Exchange Scheme for Drones
Neda Toghraee - Hamid Mala
more
Samin Hamayesh - Version 42.5.2