0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
Authors :
Olya Rezaeian
1
ُSeyedhamidreza Shahabi Haghighi
2
Jamal Shahrabi
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیر کبیر
3- دانشگاه صنعتی امیرکبیر
Keywords :
Customer Churn, Data Mining, Imbalance Data, RFM Model
Abstract :
Customer Relationship Management (CRM) and data-driven marketing have become of paramount importance in this age of evolved markets and fierce competition among businesses. One of the most important branches of CRM is retaining existing customers. Since customer acquisition is about 5 to 6 times more costly than retaining customers, achieving an accurate model for customer churn prediction is essential to devise marketing retention strategies. Therefore, in this study, ensemble models are proposed to predict customer churn. Since customer churn is a rare occurrence in an organization and causes an imbalanced distribution in the target variable, ensemble learning algorithms, one of the most efficient and widely used methods, have been used to deal with this problem. With regard to the case study, the dataset was generated on demographic and 13-month transactions of users of an Iranian payment application. In this study, the best model to predict customer churn is the bagging version of Decision Tree, reaching the highest accuracy, f-measure and AUC.
Papers List
List of archived papers
Similarity Measures in Medical Image Registration: A Review Article
Zohre Mohammadi - Dr Mohammad Reza Keyvanpour
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
ParaKavosh: A Parallel Algorithm for Finding Biological Network Motifs
Dr Zahra Razaghi Moghadam Kashani - Dr Ali Masoudi-nejad - Dr Abbas Nowzari-dalini
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
Saba Ameri - Reza Ebrahimi Atani
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
more
Samin Hamayesh - Version 42.5.2