0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Authors :
Rojan Roshankar
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
Keywords :
Crime Hotspots،Spatio-Temporal data،WaveNet،Attention Mechanism،Chicago Crime dataset
Abstract :
An accurate prediction of crime hotspots is critical for optimizing law enforcement strategies and urban planning. In this paper, we introduce STANet, a Spatio-Temporal Attention-Enhanced WaveNet model developed to predict crime hotspots using spatial and temporal crime data. KMeans clustering and advanced data preprocessing techniques are combined in STANet to analyze five years of crime incidents reported in Chicago. In the model, spatial-temporal dependencies are incorporated through WaveNet architecture and enhanced through attention mechanisms in order to capture complex crime patterns more effectively. As a result of our experiments, we are able to demonstrate that STANet outperforms traditional models, such as XGBoost, DNN, and decision trees, with an accuracy of 86% and a precision and recall that are balanced. As a result of this mechanism, the model can identify and focus on the most relevant time steps dynamically, improving its accuracy in predicting the future. STANet can be used to predict hotspots for crime, offering actionable insights for resource allocation and crime prevention. To enhance the predictive capability of the model, further exploration will involve expanding the dataset and incorporating additional features.
Papers List
List of archived papers
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
Parsa Bakhtiari - Hassan Bashiri - Alireza Khalilipour - Masoud Nasiripour - Moharram Challenger
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
Fast Online Character Recognition Using a Novel Local-Global Feature Extraction Method
Ayoub Parvizi - Dr Mohammad Kazemifard - Ziba Imani
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
more
Samin Hamayesh - Version 41.3.1