0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Authors :
Rushil Patel
1
Sana Narmawala
2
Nikunjkumar Mahida
3
Rajesh Gupta
4
Sudeep Tanwar
5
Hossein Shahinzadeh
6
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
Optical Fibre،Smart City،Surveillance،Machine Learning،Fault Detection
Abstract :
It is evident that the intense transformation in the smart city structure has produced a demand for more optical fibre networks to facilitate the systems’ speedy communication for instance traffic control, surveillance, as well as IoT devices. Due to the nature of the optical fibre networks being very susceptible, and the slightest break or a bend can result in a major breakdown of operation; then, the ability to quickly identify the fault as well as rectify it is important in maintaining the efficiency of the systems. In this work, we propose a detailed workflow for fibre optic fault detection and classification using machine learning. We employ LightGBM, XGBoost, CatBoost, and AdaBoost machine learning models, along with OTDR data to categorize fault types. The process we adopt comprises enhancing the raw data to capture more of the signals quality before analyzing the data using these models for fault detection. Of all the models LightGBM was the best performing as it recorded an accuracy of 98.12% thereby making it to be the best model for this task. The use of key performance metrics such as accuracy, precision, recall, and F1-score along with confusion matrices, ROC curves on the graphs was done in order to measure the performance of the models accurately. Based on the performance of these models, a rational strategy in developing an intelligent solution for maintaining the operability and efficiency of smart city fibre optic networks is achieved.
Papers List
List of archived papers
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
مهدی علیرضانژاد - عمار عبیس حسین المعموری
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
A Fuzzy Cluster-Based Routing Algorithm to Extend Wireless Sensor Network Lifetime
Mostafa Mirzaie - Armin Mazinani - Dr Sayyed Majid Mazinani
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
more
Samin Hamayesh - Version 41.3.1