0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Authors :
Rushil Patel
1
Sana Narmawala
2
Nikunjkumar Mahida
3
Rajesh Gupta
4
Sudeep Tanwar
5
Hossein Shahinzadeh
6
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
Optical Fibre،Smart City،Surveillance،Machine Learning،Fault Detection
Abstract :
It is evident that the intense transformation in the smart city structure has produced a demand for more optical fibre networks to facilitate the systems’ speedy communication for instance traffic control, surveillance, as well as IoT devices. Due to the nature of the optical fibre networks being very susceptible, and the slightest break or a bend can result in a major breakdown of operation; then, the ability to quickly identify the fault as well as rectify it is important in maintaining the efficiency of the systems. In this work, we propose a detailed workflow for fibre optic fault detection and classification using machine learning. We employ LightGBM, XGBoost, CatBoost, and AdaBoost machine learning models, along with OTDR data to categorize fault types. The process we adopt comprises enhancing the raw data to capture more of the signals quality before analyzing the data using these models for fault detection. Of all the models LightGBM was the best performing as it recorded an accuracy of 98.12% thereby making it to be the best model for this task. The use of key performance metrics such as accuracy, precision, recall, and F1-score along with confusion matrices, ROC curves on the graphs was done in order to measure the performance of the models accurately. Based on the performance of these models, a rational strategy in developing an intelligent solution for maintaining the operability and efficiency of smart city fibre optic networks is achieved.
Papers List
List of archived papers
بهبود کارایی بارسپاری در شبکه های سلولی با استفاده از ارتباطات مشارکتی در لایه MAC
نبیل الراشدی - رسول صادقی - وائل حسین اللامی - مهدی حمیدخانی
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
ارائۀ چارچوب هستانشناسی برای شهر هوشمند مبتنی بر سیستمهای سایبر-فیزیکی
علی اصغر قائمی - جعفر حبیبی - سید حسن میریان
قطعه بندی خودکار توده کلیه در تصاویر توموگرافی کامپیوتری با استفاده از همافزایی شبکه عصبی عمیق U-Net و الگوریتم فراابتکاری نهنگ
علی خلیلی - محمد مصلح - محمد خیراندیش
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
Samin Hamayesh - Version 40.3.1