0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Stock Market Prediction Using Hard and Soft Data Fusion
Authors :
Saeed Mohammadi Dashtaki
1
Masoud Alizadeh
2
Behzad Moshiri
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
Keywords :
Stock Market Prediction،Data Fusion،Hard and Soft Data Fusion،Artificial Neural Networks،LSTM
Abstract :
The stock market fluctuates a lot due to economic factors and public sentiments. This challenge is exacerbated by the high volatility of stock price trends. To predict the trend of this market, better and more accurate forecasting is expected by combining different sources. We use the available historical data in three values using a Stacked LSTMs network to do this. Then we achieve better results in network output by using OWA methods. The next step is to get the correct news from the website and use the Natural Language Toolkit (NLTK) to analyze their negative or positive impact on the market. Then, by using the technical knowledge and experience of several human experts, including the recognition of patterns in technical analysis and knowledge of the market news, we obtain the soft outputs, which finally combine the outputs of human experts with the outputs obtained from the network. One of the applications of combining hard and soft data is stock market forecasting, and finally, a proposed model for this work is presented
Papers List
List of archived papers
Kalman Filter–Based Anomaly Detection for User Authentication Failures in Enterprise Logs
Somayeh Soltani - Hossein Nikdel
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
تشخیص و جلوگیری از حمله انعکاسی/تقویتی SSDP در شبکه های نرم افزار محور مبتنی بر 4P با استفاده از الگوریتم های یادگیری ماشین
امیرحسین کرمی - رضا محمدی
شناسایی و تحلیل ظرفیتهای استفاده از فناوری هوش مصنوعی در توسعه و بهبود شاخص مشارکت الکترونیکی
فرشاد حکمی زاده - عاطفه فرازمند
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
SeyedMohammadReza AhmadEnjavi - Masoud Shafiee
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
مکانیابی خطاهای کاربردها و خدمات نرمافزاری با کمک تولید داده آزمون با نامتغیرهای محتمل
محمد نصرتی مقدم - حسن حقیقی - مجتبی وحیدی اصل
Human Resource Allocation to the Credit Requirement Process, A Process Mining Approach
Omid Mahdi Ebadati - Mohammad Mehrabioun - Shokoofeh Sadat Hosseini
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
more
Samin Hamayesh - Version 42.5.2