0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
Arian Baymani - Maryam Naderi Soorki
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
پیدا کردن خبره در انجمنهای پرسش و پاسخ با استفاده از الگوریتم طبقهبندی ترکیبی
مهراد قاضی پور - علیرضا رضوانیان
more
Samin Hamayesh - Version 42.0.3