0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
طراحی پلتفرم یکپارچه مدیریت مزرعه هوشمند مبتنی بر اینترنت اشیاء و یادگیری عمیق
محمد خدادادی نژاد - صبا جودکی
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
استفاده از هوش مصنوعی در فضای آموزش عالی: آن روی سکه
محمدمتین لیث صفار - عسل آغاز
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
تحلیل سازههای موثر بر پذیرش فناوری بلاکچین و استفاده از آن در صنعت بیمه ایران با استفاده از تکنیک معادلات ساختاری (مطالعه موردی: شرکت کارگزاری رسمی بیمه زندگی خوب)
احسان هنری - آفرین اخوان
Energy-Saving for User-Centric Dynamic 5G HetNets Using DRL Method
Erfan Rasti - Mohammad Ali Arami - Abbas Mohammadi
معماری مبتنی بر مدلهای زبانی بزرگ برای تخصیص وظایف پویا و خودکار در سامانه رباتیک ازدحامی چندالگوریتمی
حمید هوشمند - سینا میرخانی - محمد حسین وارث وزیریان
more
Samin Hamayesh - Version 42.5.2