0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
پیاده سازی موازی یک طرح (t,n)-تسهیم چند تصویر با استفاده از GPU
سعیده کبیری راد
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
more
Samin Hamayesh - Version 41.3.1