0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
Cryptanalysis of two password authenticated key exchange schemes
Mohammad Ali Poorafsahi - Hamid Mala
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
پیدا کردن خبره در انجمنهای پرسش و پاسخ با استفاده از الگوریتم طبقهبندی ترکیبی
مهراد قاضی پور - علیرضا رضوانیان
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions
Shivam Tripathi - Vatsalkumar Makwana - Malaram Kumhar - Harshal Trivedi - Jitendra Bhatia - Sudeep Tanwar - Hossein Shahinzadeh
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
Samin Hamayesh - Version 40.3.1