0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
Authors :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Embedded Systems،Embedded AI،Embedded Speech embedding
Abstract :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
Papers List
List of archived papers
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
ارائه یک رویکرد معنایی مبتنی بر آنتولوژی به منظور شناسایی تاکتیکهای معماری
احسان شریفی - دکتر احمد عبدالله زاده بارفروش
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
تحلیل سازههای موثر بر پذیرش فناوری بلاکچین و استفاده از آن در صنعت بیمه ایران با استفاده از تکنیک معادلات ساختاری (مطالعه موردی: شرکت کارگزاری رسمی بیمه زندگی خوب)
احسان هنری - آفرین اخوان
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
کنترل کیفیت غیرمتمرکز مبتنی بر هوش ترکیبی در سیستمهای مشارکتی برخط
مهدیه طالب زاده - هاله امین طوسی - محمد اله بخش
more
Samin Hamayesh - Version 42.5.2