0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Authors :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
Keywords :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
Abstract :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
Papers List
List of archived papers
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
مروری بر تشخیص جامعه در شبکه های اجتماعی
صفورا اخلاقی - محمدباقر منهاج - بهروز معصومی
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
Optimal control of robotic hand for rehabilitation using fractional order systems and EEG signal processing
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Masoud Shafiee
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
A High-Speed Quantum Reversible Controlled Adder/Subtractor Circuit
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
طراحی و پیاده سازی بستر اجرای بازی جنگ سایبری
مریم نصراصفهانی - بهروز ترک لادانی - بهروز شاهقلی قهفرخی - حسین قجاوند بلتیجه - نوید شیرمحمدی - مهدی شمس - محمدامین آقاکبیری
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
more
Samin Hamayesh - Version 41.3.1