0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Authors :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
Keywords :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
Abstract :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
Papers List
List of archived papers
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
تحلیل کتابسنجی از مقالات حوزه دوقلوهای دیجیتال
فاطمه مکی زاده - سارا صراف - مصطفی شیرالی
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
Embedding-Consistent Contrastive Learning: A Robust Approach for Imbalanced Classification
Sobhan Siamak - Eghbal Mansoori
مکانیابی بهینه آلودگی در شبکههای توزیع آب با استفاده از تکنولوژی اینترنت اشیاء بر مبنای پیشبینی سری زمانی چند متغیره
زینب محزون - امید بوشهریان
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
more
Samin Hamayesh - Version 42.5.2