0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Authors :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
Keywords :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
Abstract :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
Papers List
List of archived papers
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
تحلیل کتابسنجی از مقالات حوزه دوقلوهای دیجیتال
فاطمه مکی زاده - سارا صراف - مصطفی شیرالی
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
more
Samin Hamayesh - Version 42.0.3