0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Authors :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
Keywords :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
Abstract :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
Papers List
List of archived papers
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
StockFM: پیش بینی قیمت بازار بورس ایران به کمک مدل بنیادین سری زمانی
فاطمه چیت ساز - سامان هراتی زاده
یک روش خوشه بندی گره ها برای شبکه های حسگر بیسیم با هدف بهبود متوازن سازی بار مبتنی بر تکنیک تاپسیس
راضیه حسین رضایی - فهیمه یزدان پناه
Sigma: A Secure Federated Network Gaming Platform
Keyhan Mohammadi - Reza Ebrahimi Atani
Enhancing Software Effort Estimation with an Integrated Approach of Particle Swarm Optimization and Genetic Algorithms in Analogy-based Method
Ehsan Nasr - Keyvan Mohebbi
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
Samin Hamayesh - Version 40.3.1