0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Authors :
Marzieh Sedighi
1
Mehdi Hamidkhani
2
Mostafa Sadeghi
3
1- دانشگاه آزاد اسلامی واحد دولتآباد
2- دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)
3- دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)
Keywords :
VANET،Black-hole attack،Packet delivery rate،DABHA-VANET
Abstract :
The VANET is a type of case mobile networks (a decentralized type of wireless networks) which includes moving vehicles as nodes in the network that establishes communication among adjacent vehicles as well as stationary vehicles and equipment which are usually installed along the roads. Therefore, reducing network overhead and traffic and increasing the data transmission security as well as the Packet Delivery Rate (PDR) are the most important issues related to VANETs. One of the most important challenges in the inter-vehicle networks is the presence of security attacks such as black-hole attacks in which the malicious node eliminates data packets and reduces the quality of the network. Therefore, this paper proposes a method to detect and eliminate the black-hole attacks in three phases. The so called DABHA-VANET in the first phase confirms the new join requests and verifies valid vehicles by checking the previous database and number of the steps. In the second phase, it applies the PDR algorithm to detect malicious nodes of the black-hole and then eliminates these nodes from the network and routing. Finally, the NS-2 simulator is used to compare DABHA-VANET with the PFDSA method. The provided results indicated an acceptable performance of the proposed approach.
Papers List
List of archived papers
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
DynamicEvoStream : خوشه بندی پویای جریان داده تکاملی در زمانهای بیکاری
زهرا عمیقی - مرتضی یوسف صنعتی - میرحسین دزفولیان
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Samin Hamayesh - Version 40.3.1