0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Authors :
Amir Mohammad Kouyeshpour
1
Hadi Veisi
2
Saman Haratizadeh
3
1- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
2- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
3- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
Keywords :
Word Sense Induction،Network Modeling،Community Detection،Large Language Models،Persian NLP،Lexical Semantics
Abstract :
Abstract—This paper introduces GanjNet, a novel approach to Word Sense Induction (WSI) in the Persian language that leverages network modeling and community detection in conjunction with large language models (LLMs). We present a method that constructs semantic graphs from lexical substitutes generated by LLMs and applies community detection algorithms to uncover and distinguish word senses in unannotated text. GanjNet addresses challenges such as limited annotated resources, high degrees of polysemy, and context-sensitive meanings in Persian. By leveraging unsupervised techniques, we enhance sense induction without relying on extensive labeled data. Our experiments demonstrate that GanjNet outperforms existing methods on a custom dataset derived from MirasText, achieving a V-measure of 47% and a paired F-score of 58%, compared to the best baseline method with a V-measure of 41% and a paired F-score of 53%. These results showcase the potential of integrating community detection and LLMs for unsupervised semantic tasks in morphologically rich languages like Persian. Moreover, GanjNet’s flexibility offers practical applicability across various domains, including automatic thesaurus and WordNet generation, as well as assisting writers in context-sensitive word choice, demonstrating its broader impact on natural language understanding.
Papers List
List of archived papers
خوشه بندی شبکههای بیسیم ادهاک مبتنی بر محدودیتهای فازی
پروا کلیبری - کریم صمدزمینی
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
Robustness Gap in NLP Models for Vulnerability Descriptions: Benchmarking and Data Augmentation
AmirHossein Majd - Mahdi Yousefikia - Saghar Ghasemzadeh - Amirreza Asari - Arya Khoshnavataher - Seyedeh Leili Mirtaheri
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
SeyedMohammadReza AhmadEnjavi - Masoud Shafiee
more
Samin Hamayesh - Version 42.5.2