0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Authors :
Amir Mohammad Kouyeshpour
1
Hadi Veisi
2
Saman Haratizadeh
3
1- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
2- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
3- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
Keywords :
Word Sense Induction،Network Modeling،Community Detection،Large Language Models،Persian NLP،Lexical Semantics
Abstract :
Abstract—This paper introduces GanjNet, a novel approach to Word Sense Induction (WSI) in the Persian language that leverages network modeling and community detection in conjunction with large language models (LLMs). We present a method that constructs semantic graphs from lexical substitutes generated by LLMs and applies community detection algorithms to uncover and distinguish word senses in unannotated text. GanjNet addresses challenges such as limited annotated resources, high degrees of polysemy, and context-sensitive meanings in Persian. By leveraging unsupervised techniques, we enhance sense induction without relying on extensive labeled data. Our experiments demonstrate that GanjNet outperforms existing methods on a custom dataset derived from MirasText, achieving a V-measure of 47% and a paired F-score of 58%, compared to the best baseline method with a V-measure of 41% and a paired F-score of 53%. These results showcase the potential of integrating community detection and LLMs for unsupervised semantic tasks in morphologically rich languages like Persian. Moreover, GanjNet’s flexibility offers practical applicability across various domains, including automatic thesaurus and WordNet generation, as well as assisting writers in context-sensitive word choice, demonstrating its broader impact on natural language understanding.
Papers List
List of archived papers
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
ارائه تکنیک یادگیری چندهسته ای مبتنی بر روش بهینه سازی برای مسئله دسته بندی سیگنال های EEG مبتنی بر تصور حرکتی
یوکابد امیری - حسام عمرانپور
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
Fast Online Character Recognition Using a Novel Local-Global Feature Extraction Method
Ayoub Parvizi - Dr Mohammad Kazemifard - Ziba Imani
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
Samin Hamayesh - Version 40.3.1