0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Authors :
Mohamad Khorsandi
1
Alireza Dastmalchi Saei
2
Mohammadreza Sharbaf
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
Keywords :
Software Testing،Mutation Testing،Parse Tree،Grammar Fuzzer
Abstract :
Mutation testing is a technique used to assess the effectiveness of software test suites. It works by deliberately introducing small, controlled changes, called mutations, into the code of the software under test (SUT). A robust and thorough test suite should be able to identify and detect these intentionally seeded errors. The key point is to ensure that the resulting mutant program can still be successfully loaded and executed, without causing compilation or runtime errors. The effectiveness of mutation testing directly depends on the nature and scope of the introduced mutations, as more advanced mutations and even targeted mutations can pose additional challenges to the test suite. This paper presents a novel approach leveraging parse trees and grammar fuzzing to create syntactically valid mutations. By generating a parse tree from the SUT’s source code, our method allows precise selection of target nodes and controls mutation granularity through Lexar and parser rules. A custom grammar fuzzer generates new code fragments, which are then semantically validated by a language-specific analyzer to ensure correctness. To address potential compilation issues, we propose selecting deeper parse tree nodes for mutations. Our approach enhances mutation testing precision, flexibility, and automation, ensuring valid and contextually appropriate code mutations.
Papers List
List of archived papers
Silicon photonic microring resonators: A Novel optical router based on Negative-First routing algorithm
Negin Bagheri Renani - Elham Yaghoubi
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
نقشه های شناختی فازی پیشرفته (FCM) رویکردی برای مدل سازی سیستم های پیچیده ی پویا
فریبا اسلامی امیرآبادی - کمال میرزایی بدرآبادی
ارائۀ چارچوب هستانشناسی برای شهر هوشمند مبتنی بر سیستمهای سایبر-فیزیکی
علی اصغر قائمی - جعفر حبیبی - سید حسن میریان
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
Romina Etezadi - Mehrnoush Shamsfard
more
Samin Hamayesh - Version 42.0.3