0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
نویسندگان :
طه رستمی
1
سعید جلیلی
2
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
کلمات کلیدی :
آزمون جهش، آزمون نرمافزار، امتیاز جهش، یادگیری ماشین
چکیده :
آزمون جهش روشی قدرتمند است که در آزمون نرمافزار برای فعالیتهای گوناگون از جمله راهنمایی برای تولید آزمون و ارزیابی کیفیت مجموعه آزمون استفاده میشود. با این وجود، هزینه زیاد آزمون جهش مقیاسپذیری آن را به طور جدی تهدید میکند. در همین راستا، آزمون جهش پیشگویانه به عنوان روشی برای کاهش هزینههای آزمون جهش پیشنهاد شده است که در آن هدف پیشبینی کردن کشف شدن یا کشف نشدن یک برنامه جهشیافته توسط مدلهای یادگیری ماشین است. اخیراً نشان داده شده است که کارهای قبلی آزمون جهشپیشگویانه تاثیر برنامه های جهشیافته کشف نشده را در نظر نگرفتند و وقتی پیشبینی مدلهای یادگیری ماشین قبلی محدود به چنین برنامههای جهشیافتهای شود AUC به %61 کاهش پیدا میکند. در این پژوهش، علاوه بر تاثیر برنامههای جهشیافته کشف نشده، تاثیر دادههای از دست رفته نیز در نظر گرفته شده است در حالی که کارهای گذشته آن را نادیده گرفته بودند و روشی پیشنهاد شده است که دقت AUC را از %61 به %72 بهبود داده است.
لیست مقالات
لیست مقالات بایگانی شده
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4