0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Authors :
Ehsan Akefi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا همدان
2- دانشگاه بوعلی سینا همدان
Keywords :
Image Segmentation،U-Net،Graph Neural Network،Graph Attention Network،Dental Panoramic Radiography
Abstract :
It is very important for clinical diagnosis and treatment planning to be able to accurately segment teeth in panoramic radiographs. However, this is still a big problem because teeth often overlap, and standard convolutional neural networks (CNNs) have trouble capturing long-range spatial dependencies. This paper presents a novel hybrid deep learning architecture that combines a U-Net with an Advanced Spatial Graph Processor to address these constraints. The proposed model substitutes the conventional bottleneck of the U-Net with a Graph Neural Network (GNN) module, which distinctly represents non-local relationships among various regions of the image by converting the feature map into a graph structure. The model can dynamically focus on important structural patterns by using Graph Attention Networks (GAT). This makes it much easier to see the boundaries of complex and overlapping teeth. To address the issue of insufficient labeled medical data, a comprehensive data augmentation pipeline was implemented. This increased the training dataset by five times, making the model more generalizable. Our hybrid approach is better than the other one, as shown by experimental results on the Tufts Dental Database. The proposed model with attention (Unet + graph + attention) outperformed the baseline U-Net, achieving a Dice Score of 92.91% and an Intersection over Union (IOU) of 86.77%. These results show that using the local feature extraction capabilities of U-Net with the global structural modeling of GNNs is a strong and very accurate way to segment teeth. This has a lot of potential for use in clinical settings.
Papers List
List of archived papers
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
ISAAF: بهبود چارچوب مجوز خودتطبیق SAAF با استفاده از پیادهسازی مبتنی بر عامل و مفهوم I-Shairing
الهام معین الدینی - دکتر منیره عبدوس - دکتر اسلام ناظمی
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
Amirmasoud Sepehrian - Siavash Khorsandi
مروری بر تشخیص جامعه در شبکه های اجتماعی
صفورا اخلاقی - محمدباقر منهاج - بهروز معصومی
کنترل کیفیت پیش_بینانه آمیزه_های لاستیکی مدلی یکپارچه بر اساس استاندارد پذیرش متغیرهای ANSI Z1.9 و پایش رئولوژیکی برخط
آکو یاری - فرهاد محمدزاده
Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links
Alireza M. Hosseini - Dr Abbas Mohammadi
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
پیاده سازی موازی یک طرح (t,n)-تسهیم چند تصویر با استفاده از GPU
سعیده کبیری راد
DynamicEvoStream : خوشه بندی پویای جریان داده تکاملی در زمانهای بیکاری
زهرا عمیقی - مرتضی یوسف صنعتی - میرحسین دزفولیان
more
Samin Hamayesh - Version 42.5.2