0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Authors :
Ehsan Akefi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا همدان
2- دانشگاه بوعلی سینا همدان
Keywords :
Image Segmentation،U-Net،Graph Neural Network،Graph Attention Network،Dental Panoramic Radiography
Abstract :
It is very important for clinical diagnosis and treatment planning to be able to accurately segment teeth in panoramic radiographs. However, this is still a big problem because teeth often overlap, and standard convolutional neural networks (CNNs) have trouble capturing long-range spatial dependencies. This paper presents a novel hybrid deep learning architecture that combines a U-Net with an Advanced Spatial Graph Processor to address these constraints. The proposed model substitutes the conventional bottleneck of the U-Net with a Graph Neural Network (GNN) module, which distinctly represents non-local relationships among various regions of the image by converting the feature map into a graph structure. The model can dynamically focus on important structural patterns by using Graph Attention Networks (GAT). This makes it much easier to see the boundaries of complex and overlapping teeth. To address the issue of insufficient labeled medical data, a comprehensive data augmentation pipeline was implemented. This increased the training dataset by five times, making the model more generalizable. Our hybrid approach is better than the other one, as shown by experimental results on the Tufts Dental Database. The proposed model with attention (Unet + graph + attention) outperformed the baseline U-Net, achieving a Dice Score of 92.91% and an Intersection over Union (IOU) of 86.77%. These results show that using the local feature extraction capabilities of U-Net with the global structural modeling of GNNs is a strong and very accurate way to segment teeth. This has a lot of potential for use in clinical settings.
Papers List
List of archived papers
مدل یادگیری عمیق با بازنمایی چند مقیاسی زمان برای پیشبینی آبشار اطلاعاتی در شبکههای اجتماعی
مبینا پناهی - مهدی عمادی
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
Silicon photonic microring resonators: A Novel optical router based on Negative-First routing algorithm
Negin Bagheri Renani - Elham Yaghoubi
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
Reinforced Detection: Deep Reinforcement Learning for Binary VoIP Classification in Encrypted Traffic
Mohsen Rajabpour - Mohammadmoein Asefi - Siavash Khorsandi
کنترل کیفیت غیرمتمرکز مبتنی بر هوش ترکیبی در سیستمهای مشارکتی برخط
مهدیه طالب زاده - هاله امین طوسی - محمد اله بخش
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
Secure Mutual Authentication and Key Agreement Protocol for IoT
Mostafa Sadeghi
more
Samin Hamayesh - Version 42.5.2