0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
Authors :
Amirmasoud Sepehrian
1
Siavash Khorsandi
2
1- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
2- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
6G Networks،Soft Network Slicing،Graph Neural Networks،Topology Feature Extraction،Representation Power،Comparative Evaluation
Abstract :
The evolution to 6G networks introduces unprecedented challenges, including ultra-high data rates, massive connectivity, and stringent QoS demands (e.g., sub-millisecond latency for URLLC) in highly dynamic, heterogeneous environments. Traditional hard slicing methods fall short in adapting to fluctuating traffic and resource availability, leading to inefficiencies in resource utilization, SLA violations, and increased energy consumption. This necessitates advanced adaptive mechanisms like soft network slicing, which require precise topology descriptions to predict performance metrics and enable real-time orchestration. Graph Neural Networks (GNNs) are essential here, as they excel at capturing intricate graph-structured relationships in network topologies—far superior to conventional ML models that ignore relational dependencies—facilitating scalable feature extraction for optimization tasks. This research addresses these needs through two core components: (1) a comprehensive comparison of GNN variants (GraphSAGE, GCN, GAT, TransformerConv) to evaluate their representation power in terms of descriptive accuracy and runtime; and (2) a novel embedding method that integrates current slicing requests and global graph features (e.g., density, centrality) with local attributes. Using the Internet Topology Zoo dataset augmented with 6G slice variants, we assess models on metrics like MSE, R2, SMAPE, runtime efficiency, and generalization.
Papers List
List of archived papers
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
DynamicEvoStream : خوشه بندی پویای جریان داده تکاملی در زمانهای بیکاری
زهرا عمیقی - مرتضی یوسف صنعتی - میرحسین دزفولیان
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
A Potential Solutions-Based Parallelized GA for Application Graph Mapping in Reconfigurable Hardware
Seyed Mehdi Mohtavipour - Hadi Shahriar Shahhoseini
Low-Power Phase-Based Stochastic MAC for FPGA
Kooroush Manochehri - Amir arsalan Sakhtianchi - Mehrshad Khosraviani
AI-Powered Beauty Insights: Sentiment Analysis in a Low-Resource Language
Sajedeh Talebi - Neda Abdolvand - Fatemeh Mahdian
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
more
Samin Hamayesh - Version 42.5.2