0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
Authors :
مهدی علیرضانژاد
1
عمار عبیس حسین المعموری
2
1- عضو هیات علمی دانشگاه آزاد اسلامی واحد فیروزکوه
2- دانشجو کارشناسی ارشد مهندسی کامپیوتر ، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)
Keywords :
اینترنت اشیا،الگوریتم بهینهسازی گرگ خاکستری،الگوریتم ازدحام ذرات،جنگل تصادفی
Abstract :
با توجه به پیشرفتهای فناوری مانند اینترنت اشیاء، رایانش ابری، دستگاهها و خدمات شبکه به طور مداوم در حال افزایش هستند و پیچیدگی شبکه را افزایش میدهند که باعث ایجاد چالشهایی در حفظ امنیت شبکه به دلیل پیچیدگی روزافزون شبکه میشود. توسعه این فناوری ها باعث شده تا مصرف کنندگان زیادی در سطح جهانی به سمت آنها سوق پیدا کنند و فرصت های زیادی را برای کسب و کارها به ارمفان بیاورد. از سوی دیگر، افزایش تعداد تجهیزات و دستگاه ها در اینترنت اشیاء باعث شده تا انواع مختلف حملات را برای فرار از امنیت شبکه اینرنت اشیا کشف و از آنها سوء استفاده شود. از این رو، مراقبت از ایمنی شبکه های اینترنت اشیا ضروری است. ابزارها و راه حل های مختلفی برای مبارزه با انواع مختلف حملات شبکه مانند دیوارهای آتش، ضد بدافزارها و فیلترهای هرزنامه وجود دارد. نمونه هایی از ابزارها و تکنیک های مختلف شامل سیستم تشخیص نفوذ مبتنی بر ناهنجاری است و سیستم تشخیص نفوذ می تواند یک ابزار امنیتی ضروری و بسیار ارزشمند برای تضمین امنیت شبکه اینترنت اشیاء باشد. بررسی مطالعات انجام شده جهت تشخیص نفوذ در اینترنت اشیاء نشان داده که مجموعه دادههای با ابعاد بالا که دادههای شبکه دنیای واقعی را شبیهسازی میکنند، پیچیدگی و زمان پردازش آموزش و آزمایش سیستم را افزایش میدهند، در حالی که ویژگیهای نامربوط منابع را هدر میدهند و نرخ تشخیص را کاهش میدهند. در این پژوهش یک مدل تشخیص نفوذ ارائه شده است که از مدل ترکیبی بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی به جهت بهبود تشخیص نفوذ هوشمند مبتنی بر ناهنجاری برای شبکه اینترنت اشیاء ارائه دهد. در این پژوهش، الگوریتم های بهینهسازی گرگ خاکستری و ازدحام ذرات برای انتخاب ویژگی استفاده می شوند و سپس از جنگل تصادفی برای طبقه بندی داده ها استفاده می شود. از چهار مجموعه داده NSL-KDD، KDDCUP99، ADFA و UNSW-NB15 برای ارزیابی مدل پیشنهادی و دیگر الگوریتم ها استفاده گردید و نتایج تجربی نشان میدهد که مدل پیشنهادی عملکرد بهتری نسبت به سایر تکنیکها از نظر دقت، صحت، فراخوانی، امتیاز F1، نرخ خطای کمتر و توانایی بهتر در تشخیص انواع مختلف حملات دارد.
Papers List
List of archived papers
مروری تحلیلی بر مسائل، معماری و چالشهای شبکههای عصبی گراف در گرافهای دوبخشی
صفورا اسمعیلی - فردین اخلاقیان طالب - صادق سلیمانی
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
Coded Sharding for Vehicular Blockchains: A Lagrange Interpolation-Based Approach to IoV Scalability
Behdad Alagha - Maedeh Mosharraf
خوشهبندی موثر در استخراج توضیحات مفهوممحور خودکار برای شبکههای پیچشی
سعید معروف - مریم امیرمزلقانی - رضا صفابخش
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
بکارگیری الگوریتم بهینه سازی فاخته و منطق فازی به منظور بهبود زمانبندی وظایف در محیط محاسبات مه
فاطمه دوامی - حمید جلیلوند - فاطمه نجفی
ارائه تکنیک یادگیری چندهسته ای مبتنی بر روش بهینه سازی برای مسئله دسته بندی سیگنال های EEG مبتنی بر تصور حرکتی
یوکابد امیری - حسام عمرانپور
more
Samin Hamayesh - Version 42.5.2