0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Authors :
Maryam Imani
1
1- دانشگاه تربیت مدرس
Keywords :
hyperspectral, anomaly detection, entropy, anisotropy
Abstract :
Two statistical disorder parameters are defined for hyperspectral anomaly detection in this paper. While the background information is usually located in principal components of the hyperspectral data containing the most energy, the low variance components contain anomaly or noise signals. Two introduced parameters are computed based on the principal components. The first parameter called as entropy contains the randomness value of the spectral measurements while the second parameter called as anisotropy contains the relative importance of the consecutive components of the hyperspectral image. The extracted features can be given to any arbitrary anomaly detector. The experimental results show that feeding entropy and anisotropy features to the RX detector provides a significant improvement in hyperspectral anomaly detection.
Papers List
List of archived papers
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
بررسی روش m-ary در تولید زنجیرههای افزونه کوتاه
هادی صادقی کاجی - دکتر زهرا کریمی - دکتر محمد غلامی
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Open-domain question classification and completion in conversational information search
Omid Mohammadi Kia - Mahmood Neshati - Mahsa Soudi Alamdari
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
Samin Hamayesh - Version 40.3.1