0% Complete
فارسی
Home
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Authors :
Maedeh Mosharraf
1
Faezeh Banabazi
2
1- دانشگاه شهید
2- دانشگاه شهید بهشتی
Keywords :
children personality style،MMTIC،drawing analysis،machine learning،k-nearest neighbors،random forest،decision tree
Abstract :
The impact of personality styles on individuals' behavior and choices is undeniable. With the advancements in datamining and machine learning techniques, various methods have been proposed to automatically identify personality styles by processing extensive data and exploring some human behavioral patterns. In this article, we examine children's personality styles by analyzing their drawings using some machine learning techniques. We employ the Murphy-Meisgeier Type Indicator for Children (MMTIC) questionnaire results to train k-nearest neighbors, random forest, and decision tree classifiers. Although we focus on a limited set of drawing features in this study, the results obtained are remarkably significant. We believe that the findings of this study will have a profound impact on early identification of children's personality styles and their decision-making throughout their lives.
Papers List
List of archived papers
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
پیشنهادات کالیبره شده براساس احساسات استخراج شده از متون مرتبط با آیتم ها
شیوا پارساراد - دکتر سامان هراتی زاده شیوا پارساراد - سامان هراتی زاده -
A Framework for Systematic Stability Assessment of Post-hoc Explanations in Text Classification
Parman Mohammadalizadeh - Parham Mohammadalizadeh - Ayda Mahmoudian
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
SeyedMohammadReza AhmadEnjavi - Masoud Shafiee
طبقهبندی ترافیک رمز مبتنی بر یادگیری ماشین
افسانه معدنی - شقایق نادری - حسین قرایی
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
A hybrid CNN–transformer framework for retinal disease classification
Hanie Zomorrodi - Hassan Khotanlou
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
more
Samin Hamayesh - Version 42.5.2