0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
FedCloak: Backdoor-Based Covert Channels in Federated Learning
Authors :
Mohammad Matin Rezaeifard
1
Fatemeh Zahedi
2
Seyed Arsalan Vasegh Rahim Parvar
3
Reza Ebrahimi Atani
4
1- دانشگاه گیلان
2- دانشگاه گیلان
3- دانشگاه گیلان
4- دانشگاه گیلان
Keywords :
Federated learning،Backdoor Attacks،Covert communication،Data Poisoning،Binary Memoryless Channel (BMC)،Adversarial Machine Learning،Model Aggregation،Security and privacy in distributed systems
Abstract :
Federated learning enables collaborative model training without centralizing data, but its distributed structure also exposes new vectors for covert communication. Existing schemes that embed messages in model parameters often require fine grained control and support only single sender settings, limiting their practicality. This paper introduces FedCloak, a novel framework that transforms data poisoning backdoor attacks into multi party covert channels within federated learning systems. By encoding bits through the global model’s transition between clean and triggered states, FedCloak allows colluding clients to exchange information without modifying aggregation protocols or model internals. The communication process is analytically modeled as a binary memoryless channel, enabling quantitative estimation of reliability via bit prediction accuracy. Experiments on CIFAR-10 with ResNet-9 across four aggregation algorithms (FedAvg, Trimmed Mean, Krum, and Multi-Krum) show that FedCloak achieves stable, high accuracy transmission even under aggregation noise. These results demonstrate that backdoor dynamics can act as an effective and practical substrate for covert communication in federated learning.
Papers List
List of archived papers
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
ساخت پیکره برچسب خورده گزارش های آسیب شناسی
مسلم سمیعی پاقلعه - مهرنوش شمس فرد
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
Improving Long-Term Engagement of Insurance Brokerages by Providing Gamified Configurations Based on The Delphi Method
Hosein Bayati - Fattaneh Taghiyareh - Sahand Hashemi
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
more
Samin Hamayesh - Version 42.5.2