0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Classification of mental states of human concentration based on EEG signal
Authors :
Mehran Safari Dehnavi
1
Vahid Safari Dehnavi
2
Masoud Shafiee
3
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
Keywords :
EEG signal, machine learning methods, classification.
Abstract :
This paper provides a suitable method for classifying the EEG signal. In this article, a number of features are extracted from the EEG signal and by using these different features and networks, these signals are classified into three categories: relaxation, moderate concentration and high concentration. In this case, based on the amount of mental activity that has a direct effect on the EEG signal, the state of attention can be categorized. In this paper, four sensors (electrodes) are used to collect the voltage of the brain signals, then the Large Laplacian Filter is used to localize the signals, and by this method, the signals of the four sensors are converted into one signal, then the frequency of 50 Hz (City frequency) is removed using a Notch passive filter and then a wavelet filter is used to remove noise and artifacts. In this article, the diagnosis of mental states in the time domain is examined. Then, a window is determined on the measured signal and in these windows, various features are extracted and by using these features and machine learning methods, different mental states are categorized. Finally, the method used is tested on the data set and the results of the method is checked. One of the advantages of the proposed method is to reduce the number of network inputs based on PCA feature reduction method, which leads to a reduction in network volume, which is especially important in neural networks. In this article, we have tried to increase the accuracy of classification by using various features.
Papers List
List of archived papers
A Survey on Utilizing Reinforcement Learning in Wireless Sensor Networks Routing Protocols
Ali Forghani Elah Abadi - Seyedeh Elham Asghari - Sepideh Sharifani - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
FedCloak: Backdoor-Based Covert Channels in Federated Learning
Mohammad Matin Rezaeifard - Fatemeh Zahedi - Seyed Arsalan Vasegh Rahim Parvar - Reza Ebrahimi Atani
A Framework for Systematic Stability Assessment of Post-hoc Explanations in Text Classification
Parman Mohammadalizadeh - Parham Mohammadalizadeh - Ayda Mahmoudian
ارائه یک رویکرد معنایی مبتنی بر آنتولوژی به منظور شناسایی تاکتیکهای معماری
احسان شریفی - دکتر احمد عبدالله زاده بارفروش
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
بهینهسازی مسیر وسیله ی نقلیه ی هوایی بدون سرنشین جهت کاهش زمان جمع آوری داده از حسگرها در شبکه ی اینترنت اشیا مبتنی بر الگوریتم یادگیری تقویتی عمیق
محمد ناظمی جنابی - هادی اشعریون - مهدی پورقلی
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
SeyedMohammadReza AhmadEnjavi - Masoud Shafiee
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
more
Samin Hamayesh - Version 42.5.2