0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
نویسندگان :
SeyedMohammadReza AhmadEnjavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Physics-Informed Neural Networks،Tasmanian Devil Optimizer،Optimization for Deep Learning
چکیده :
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving forward and inverse partial differential equations (PDEs), yet their performance often deteriorates in stiff, multi-scale, or high-frequency regimes due to spectral bias, loss imbalance, and local optimization pathologies. While Self-Adaptive PINNs (SA-PINNs) mitigate error concen tration by dynamically adjusting residual weights, their correc tive power remains constrained by gradient-based optimizers that stagnate in rugged landscapes. To address this gap, we introduce a co-evolutionary framework that integrates SA-PINNs with the Tasmanian Devil Optimizer (TDO), a recent population based metaheuristic. In the proposed TDO-SA-PINN, adaptive weights reshape the loss landscape while a diverse swarm of candidate networks performs global, gradient-free exploration. This dual mechanism simultaneously targets spectral bias and optimizer-induced stagnation, and naturally yields an ensemble that encodes predictive uncertainty. Extensive experiments on canonical PDE benchmarks demonstrate that TDO-SA-PINNs achieve lower error and more reliable convergence compared to standard PINNs trained with ADAM/LBFGS, adaptive PINN variants, and deep ensembles. The results highlight the potential of co-evolutionary population search as a scalable and effective complement to adaptive physics-informed learning frameworks.
لیست مقالات
لیست مقالات بایگانی شده
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
Particle Swarm Optimization-Based Framework for 3D Swarm Robotic Navigation Using Artificial Potential Field Dynamics
Samim Kamyab - Masoud Shirzadeh - Ghoncheh Zand
Detection of Backdoor Attacks in Neural Networks Using Input Optimization
Parsa Hashemi Khorsand - Ahmad Nickabadi
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
ZAHRA HOSEINNEJAD - Dr MEHDI NASRI
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
A Potential Solutions-Based Parallelized GA for Application Graph Mapping in Reconfigurable Hardware
Seyed Mehdi Mohtavipour - Hadi Shahriar Shahhoseini
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
ParsEL 1.0: Unsupervised Entity Linking in Persian Social Media Texts
Majid Asgari-bidhendi - Farzane Fakhrian - Dr Behrouz Minaei-bidgoli
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2