0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
TDO-SA-PINN: A Co-Evolutionary Framework for Physics-Informed Neural Networks
نویسندگان :
SeyedMohammadReza AhmadEnjavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Physics-Informed Neural Networks،Tasmanian Devil Optimizer،Optimization for Deep Learning
چکیده :
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving forward and inverse partial differential equations (PDEs), yet their performance often deteriorates in stiff, multi-scale, or high-frequency regimes due to spectral bias, loss imbalance, and local optimization pathologies. While Self-Adaptive PINNs (SA-PINNs) mitigate error concen tration by dynamically adjusting residual weights, their correc tive power remains constrained by gradient-based optimizers that stagnate in rugged landscapes. To address this gap, we introduce a co-evolutionary framework that integrates SA-PINNs with the Tasmanian Devil Optimizer (TDO), a recent population based metaheuristic. In the proposed TDO-SA-PINN, adaptive weights reshape the loss landscape while a diverse swarm of candidate networks performs global, gradient-free exploration. This dual mechanism simultaneously targets spectral bias and optimizer-induced stagnation, and naturally yields an ensemble that encodes predictive uncertainty. Extensive experiments on canonical PDE benchmarks demonstrate that TDO-SA-PINNs achieve lower error and more reliable convergence compared to standard PINNs trained with ADAM/LBFGS, adaptive PINN variants, and deep ensembles. The results highlight the potential of co-evolutionary population search as a scalable and effective complement to adaptive physics-informed learning frameworks.
لیست مقالات
لیست مقالات بایگانی شده
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
Particle Swarm Optimization-Based Framework for 3D Swarm Robotic Navigation Using Artificial Potential Field Dynamics
Samim Kamyab - Masoud Shirzadeh - Ghoncheh Zand
Beyond One-Hot: CatBoost for Heating and Cooling Load Prediction
Shayan Naghizadeh - Mohammad Saeed Rajabi - Ehsan Nazerfard
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
A Data-Driven Hybrid Algorithm for 2D Path Planning via Modeling and Metaheuristic-Based Identification
Vahid Safari Dehnavi - Masoud Shafiee
Fast Duplicate Bug Reports Detector Training using Sampling for Dimension Reduction
Behzad Soleimani Neysiani - Saeed Doostali - Seyed Morteza Babamir - Zahra Aminoroaya
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2