0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
نویسندگان :
Sepehr Rezaei
1
Mohammadreza Shams
2
Mohsen Alambardar Meybodi
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
کلمات کلیدی :
Spam Detection،Sine-Cosine Algorithm،Complex Model،Deep Learning
چکیده :
With the increasing use of mobile phones and messaging services, SMS spam has become a significant issue for users. In this paper, we propose a novel approach to tackle this problem by using Sine-Cosine Algorithm (SCA) and Complex Multi-Layer Perceptron (C-MLP). Specifically, we apply the SCA method to reduce the dimensionality of the feature space and C-MLP to improve the performance of spam detection. Also, in this paper, we investigate the effectiveness of different classification algorithms, including Support Vector Machines, Random Forests, K-nearest neighbors, Naive Bayes, bagging, and voting approaches. Our experimental results show that the proposed approach achieves high accuracy and outperforms existing methods in terms of both accuracy and F-measure. The proposed approach can be helpful in designing effective SMS spam filters and improving the overall user experience.
لیست مقالات
لیست مقالات بایگانی شده
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
ارائه راهکاری جهت مقابله با حملات DoS در شبکه های نرم افزارمحور
ویدا هاشمی - احمد بختیاری شهری - رضا جاویدان
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1