0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Authors :
Shaghayegh Mehdizadeh saraj
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
1- Kharazmi University
2- Kharazmi University
3- Kharazmi University
Keywords :
Neuron threshold،Spiking Neural Networks،Time depend coding،Artifical intelligence
Abstract :
With artificial intelligence's tremendous progress in the past decades, the demand for applying artificial intelligence algorithms and architectures in cloud computing has increased. In this regard, the need for neuromorphic hardware that enables training and processing of data generated by edge devices has increased. Different algorithms have been presented in this direction, but they consume a lot of energy and space due to the large number of calculations. Therefore, researchers tried to minimize energy consumption while maintaining accuracy in deep spiking neural networks as the least consuming generation of neural networks. In order to achieve this goal and reduce the number of references to the required memory and space, they have provided various hardware and software methods. In this article, the best architecture is used by examining the amount of energy consumed and the accuracy of different methods of architecture. Also, a hybrid method is proposed to reduce energy consumption in spiking neural networks. The proposed hybrid architecture was implemented on the MNIST dataset, showing that the power consumption is reduced by almost 1% compared to the state-of-the-art architectures. The accuracy of the proposed hybrid algorithm is 95.3%, which is the highest when compared to the architectures using the time-based coding.
Papers List
List of archived papers
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
سیستم تشخیص نفوذ مبتنی برشبکه عصبی کانولوشن برای تشخیص حمله انکارسرویس در اینترنت وسایل نقلیه
زهرا جانفدا - سید امین حسینی سنو
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
ZAHRA HOSEINNEJAD - Dr MEHDI NASRI
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
Smart City Standardized Evaluation :Use Case of Mashhad
Dr ُSeyed Mohammadreza Mirsarraf - Dr Alireza Yari - Dr Navid Zohdi - Ali Motevalizadeh
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
more
Samin Hamayesh - Version 41.3.1