0% Complete
فارسی
Home
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Authors :
Shaghayegh Mehdizadeh saraj
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
1- Kharazmi University
2- Kharazmi University
3- Kharazmi University
Keywords :
Neuron threshold،Spiking Neural Networks،Time depend coding،Artifical intelligence
Abstract :
With artificial intelligence's tremendous progress in the past decades, the demand for applying artificial intelligence algorithms and architectures in cloud computing has increased. In this regard, the need for neuromorphic hardware that enables training and processing of data generated by edge devices has increased. Different algorithms have been presented in this direction, but they consume a lot of energy and space due to the large number of calculations. Therefore, researchers tried to minimize energy consumption while maintaining accuracy in deep spiking neural networks as the least consuming generation of neural networks. In order to achieve this goal and reduce the number of references to the required memory and space, they have provided various hardware and software methods. In this article, the best architecture is used by examining the amount of energy consumed and the accuracy of different methods of architecture. Also, a hybrid method is proposed to reduce energy consumption in spiking neural networks. The proposed hybrid architecture was implemented on the MNIST dataset, showing that the power consumption is reduced by almost 1% compared to the state-of-the-art architectures. The accuracy of the proposed hybrid algorithm is 95.3%, which is the highest when compared to the architectures using the time-based coding.
Papers List
List of archived papers
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
مکانیابی خطاهای کاربردها و خدمات نرمافزاری با کمک تولید داده آزمون با نامتغیرهای محتمل
محمد نصرتی مقدم - حسن حقیقی - مجتبی وحیدی اصل
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
تحلیل سازههای موثر بر پذیرش فناوری بلاکچین و استفاده از آن در صنعت بیمه ایران با استفاده از تکنیک معادلات ساختاری (مطالعه موردی: شرکت کارگزاری رسمی بیمه زندگی خوب)
احسان هنری - آفرین اخوان
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
To Kill a Mockingbird: Cryptanalysis of an Authenticated Key Exchange Scheme for Drones
Neda Toghraee - Hamid Mala
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
Samin Hamayesh - Version 40.3.1