0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Robustness Gap in NLP Models for Vulnerability Descriptions: Benchmarking and Data Augmentation
Authors :
AmirHossein Majd
1
Mahdi Yousefikia
2
Saghar Ghasemzadeh
3
Amirreza Asari
4
Arya Khoshnavataher
5
Seyedeh Leili Mirtaheri
6
1- University of Calabria
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه خوارزمی
5- دانشگاه خوارزمی
6- University of Calabria
Keywords :
Software Vulnerabilities،Natural Language Processing،Robustness Benchmark،Noise Injection،Exploitability Prediction،Data Augmentation،Cybersecurity
Abstract :
Software vulnerability descriptions from CVE/NVD are the primary corpus for analysis, prioritization, and risk management in cybersecurity. Yet natural noise (typos, synonym substitutions, lexical variety) and adversarial perturbations undermine the accuracy and trustworthiness of NLP models. This paper presents, to our knowledge, the first systematic benchmark of NLP robustness on vulnerability descriptions. We train nine diverse architectures—lightweight transformers (MiniLM, MPNet, SBERT), hybrid models (BERT-LSTM, TextRCNN), and classical recurrent networks (BiLSTM, LSTM)—on a balanced dataset of over 56,000 real-world records from NVD and Exploit-DB, and fine-tune them for exploitability prediction. For comprehensive evaluation, we inject three noise families into test sets at levels from 10% to 80%: character-level edits (substitutions/swaps), synonym replacements using WordNet, and composite adversarial attacks generated with TextAttack. Performance declines across all models as noise rises, but vulnerability profiles differ: MiniLM attains the strongest clean-data score (F1 ≈ 0.933) yet is most brittle under character noise, whereas TextRCNN, despite a lower baseline, preserves comparatively higher stability in heavily perturbed conditions. Finally, we test a pragmatic hardening strategy—data augmentation with noisy variants followed by retraining—which consistently narrows robustness gaps across architectures without materially sacrificing clean-data accuracy. The benchmark and code enable reproducible evaluation and future robust modeling in cybersecurity.
Papers List
List of archived papers
FiReT: A Neural Radiance Fields Framework for Wireless Field Reconstruction and Transmitter Placement
Negar Pouya - Armin Soleymani - Gholamreza Moradi - Farzaneh Abdollahi
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
Investigating the impact of management information systems (MIS) on organizational transparency with an emphasis on work ethics
Sadegh Balouch - Omid mehdi Ebadati
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
A Blockchain Architecture for Secure, High-Speed P2P Energy Trades with Game-Theoretic Coalition Formation
Amin Aboutalebi Najafabadi - Seyed Hossein Hosseinian
تشخیص ارتباط معنایی در استکاورفلو با رمزگذار جمله جهانی
مجید دلیری - جعفر حبیبی - عیسی انامرادنژاد
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
یادگیری فناورانه و بینالمللیسازی سکوهای پیامرسان: چارچوبی برای بازیگران متأخر
علیرضا کبیری فرد - علی ولی زاده - مهدی مجیدپور
more
Samin Hamayesh - Version 42.5.2