0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Mamba-SAM: A Hybrid Architecture for Efficient Cardiac MRI Medical Image Segmentation
Authors :
Mohammadreza Gholipour Shahraki
1
Mehdi Rezaeian
2
Mohammad Ghasemzadeh
3
1- دانشگاه یزد
2- دانشگاه یزد
3- دانشگاه یزد
Keywords :
Medical Image Segmentation،Foundation Models،Segment Anything Model،State-Space Models،Mamba،Hybrid Architectures،Cardiac MRI
Abstract :
The Segment Anything Model (SAM) exhibits poor performance on medical images due to the domain gap from its natural image training data, high computational cost, and inherent 2D design. This paper introduces Mamba-SAM, a novel hybrid framework that efficiently adapts SAM by integrating it with a Visual Mamba (VMamba) encoder. Our architecture leverages a frozen SAM backbone for general feature extraction while a trainable VMamba branch captures domain-specific details. A Cross-Branch Attention module fuses these complementary features, and an Implicit Feature Alignment decoder ensures precise segmentation. On the ACDC cardiac MRI dataset, Mamba-SAM achieves a highly competitive average Dice score of 0.906, closely matching specialized models like UNet++, while being significantly more parameter-efficient. This work demonstrates that combining foundation models with modern state-space architectures is a powerful strategy for accurate and efficient medical image analysis.
Papers List
List of archived papers
Similarity Measures in Medical Image Registration: A Review Article
Zohre Mohammadi - Dr Mohammad Reza Keyvanpour
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Ehsan Akefi - Hassan Khotanlou
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
مقایسه اثربخشی و سودمندی معیارهای پوشش آزمون نرم افزارهای مبتنی بر گرامر
عطیه منعمی بیدگلی
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
پیشبینی فضایی–زمانی و مقایسه ریسک تب دنگی با استفاده از مدلهای یادگیری عمیق LSTM و GRU و مدل یادگیری ماشین Random Forest بر پایه مؤلفههای اقلیمی و مکانی
محمد بابائی - نجمه نیسانی سامانی
مروری بر الگوریتمهای انتخاب مشتری در یادگیری فدرال
عطیه منعمی بیدگلی - رضا مهدوی
more
Samin Hamayesh - Version 42.5.2