0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Design of low-latency Floating-Point units for Softmax Computation in Transformer-based Large Language Models
Authors :
Hoda Ghabeli
1
Amir Sabbagh Molahosseini
2
1- دانشکاه آزاد کرمان
2- دانشکاه آزاد کرمان
Keywords :
LLM،transformer،softmax،speculative،floating-point
Abstract :
Large Language Models (LLMs) have emerged as one of the most desirable and widely used interactive digital tools in the world in the last decade. Softmax is one of the key steps in LLMs where the output is a vector of probabilities for each token in the model dictionary. The softmax computations are time-consuming due to the large vocabulary size, which can significantly increase the exponential computations and normalization, impacting the overall speed of the model. Given the importance of accuracy and speed, some of the main operations and computations of softmax are performed on the floating-point units. Arithmetic speculative computations are considered when the result of the computations can be estimated from a path shorter than the critical path, with improved speedup. In this paper, speculative 32-bit floating-point computation is proposed by merging two formats, 32-bit and 16-bit, for softmax computations. Both the floating-point adder and the floating-point multiplier use this strategy. The proposed design, based on the input data of the softmax function, speculates that the 32-bit floating-point computations can be obtained by concatenating the result of 16-bit format and a part of the 32-bit format result, that gives correct results most of the time with less delay. If speculation is unsuccessful, the longer path from through the conventional 32-bit floating-point unit is activated at the cost of a slightly longer critical path. Experimental results show that speculative floating-point units lead to a reduction in delay with only marginal overhead in area and power consumption.
Papers List
List of archived papers
تحلیل احساسات نظرات کاربران تجارت الکترونیک با استفاده از تکنیک های یادگیری عمیق
محیا دشتیانه - رضا قاسمی یقین
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
3D Mesh ONoC: Design of low Insertion Loss and Non-blocking Optical Router and Efficient Routing Algorithm
Sanaz Asadinia - Elham Yaghoubi - Mostafa Sadeghi - Mahdi Mehrabi
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
کنترل کیفیت پیش_بینانه آمیزه_های لاستیکی مدلی یکپارچه بر اساس استاندارد پذیرش متغیرهای ANSI Z1.9 و پایش رئولوژیکی برخط
آکو یاری - فرهاد محمدزاده
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
DART-Net یک معماری ترنسفورمر دو مسیره و مقاوم در برابر حملات تخاصمی برای تشخیص کارآمد و انعطافپذیر هرزنامه
امین هادی - مهدی مصلح - کیوان محبی
more
Samin Hamayesh - Version 42.5.2