0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Authors :
Faeze Sadati
1
Behrooz Rezaie
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
Keywords :
machine learning، Convolutional Neural Network، feature extraction، Support Vector Machine، flower classification
Abstract :
Nowadays, deep learning techniques are increasingly growing in machine vision for object recognition, segmentation, classification, and so on, in a wide variety of applications. In this study, we apply the convolutional neural network (CNN) to flower classification. For this purpose, we firstly increase the data with the augmentation techniques and use them in the pre-trained CNN models in which classification part is removed and instead of it, we use global average pooling (GAP) in the last layer for extracting their features. The features obtained from these models are concatenated, and then we use a support vector machine (SVM) as classifier for the flower classification. We use the Oxford 102 flower and the Oxford 17 flower datasets in our experiments. By applying this method, we achieve 96.47% classification accuracy for the Oxford 102 flower and 97.64% classification accuracy for the Oxford 17 flower. The results show the effectiveness of the proposed strategy and perform more accurate classification than the traditional methods.
Papers List
List of archived papers
Comparative Study of Deep Reinforcement Learning and Genetic Algorithm Approaches for IoT Machine Learning Job Deployment in Fog Computing
Amir Moazeni - Omid Bushehrian
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
FiReT: A Neural Radiance Fields Framework for Wireless Field Reconstruction and Transmitter Placement
Negar Pouya - Armin Soleymani - Gholamreza Moradi - Farzaneh Abdollahi
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
HTCAR: Hierarchical Text Classification based on aggregation of Representations
Ali Bavand - Mohammad Mehdi Homayounpour - Ahmad Nickabadi
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
more
Samin Hamayesh - Version 42.5.2