0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
Authors :
Armin Pishehvar
1
Eghbal Mansoori
2
Abbas Mehrbaniyan
3
Reza Tahmasebi
4
1- دانشگاه شیراز
2- دانشگاه شیراز
3- دانشگاه شیراز
4- دانشگاه شیراز
Keywords :
emotion recognition،Electroencephalogram،graph convolutional neural networks،effective connectivity
Abstract :
Emotion recognition plays a vital role in our lives, from fostering deeper social connections and improving communication to enhancing human-computer interaction and personalizing healthcare. However, accurately deciphering these internal states, especially through physiological signals, presents a significant challenge. Among various methods, emotion recognition using electroencephalography (EEG) has been a persistent area of research, though it faces unique complexities. While much work in EEG-based emotion recognition emphasizes the classification of broad categories like positive versus negative emotions, the exploration of multi-class emotion recognition encompassing a wider spectrum, such as nine distinct emotional states, remains largely underexplored. To address this critical gap, we introduce FCMagnet, a novel fully complex-valued magnetic graph convolutional network, uniquely designed for nine-class EEG-based emotion recognition. Unlike traditional real-valued graph neural networks, FCMagnet captures directed effective brain connectivity through multivariate autoregressive (MVAR) modeling and partial directed coherence (PDC), encoding these as Hermitian Laplacians to preserve both magnitude and phase information. This approach, leveraging complex spectral filtering and complex-domain activation, learns rich representations of emotional brain states. Evaluated on the large FACED dataset, FCMagnet achieved 31.2 ± 3.6% accuracy, substantially outperforming classical real-valued GNNs and matching state-of-the-art spatial models while remaining more compact and interpretable. Our results clearly show that fully complex-valued spectral graph filtering provides a powerful and interpretable framework for advancing fine-grained emotion recognition.
Papers List
List of archived papers
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
مروری بر الگوریتمهای انتخاب مشتری در یادگیری فدرال
عطیه منعمی بیدگلی - رضا مهدوی
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
Design and Simulation of an Accident Prevention System Based on Weather Conditions and Internet of Things
Forouzan Dastbaz - Abdolah Chalechale
بهینهسازی مسیر وسیله ی نقلیه ی هوایی بدون سرنشین جهت کاهش زمان جمع آوری داده از حسگرها در شبکه ی اینترنت اشیا مبتنی بر الگوریتم یادگیری تقویتی عمیق
محمد ناظمی جنابی - هادی اشعریون - مهدی پورقلی
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
مقایسه اثربخشی و سودمندی معیارهای پوشش آزمون نرم افزارهای مبتنی بر گرامر
عطیه منعمی بیدگلی
A Real-Time and Robust Approach for Banknote Recognition
Hani Abdi - Mohammad Javad Parseh
چارچوب پیشبینی خرابی تطبیقی مبتنی بر شبکه عصبی گراف پویا و GRU در سامانههای صنعتی IIoT
رسول اسماعیلی فرد - لیلا رنجبر
پیاده سازی موازی یک طرح (t,n)-تسهیم چند تصویر با استفاده از GPU
سعیده کبیری راد
more
Samin Hamayesh - Version 42.5.2