0% Complete
فارسی
Home
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
Authors :
ZAHRA HOSEINNEJAD
1
MEHDI NASRI
2
1- دانشگاه شیراز
2- دانشگاه آزاد خمینی شهر
Keywords :
Copy-move forgery, SIFT, Stopping Criteria, Adaptive-RANSAC (A-RANSAC), g2NN Matching
Abstract :
Copy move forgery is one of the most common types of image forgery, and it is very important to detect this type of forgery. Feature-based forgery detection methods perform better than block-based methods. In this article, a new feature-based approach is suggested in copy-move forgery detection process. In the suggested approach, first, the features extraction process is done based on SIFT. Second, matching process is based on the g2NN criteria. Finally, removal mismatches is done based on the improved A-RANSAC that stopping criteria is presented based on the number of final matches. The stop time in the basic A-RANSAC method is based on the number of repetitions, which increases the execution time and decreases its speed. This suggested approach, in addition to proper accuracy, increases speed. The simulation results on MICC-F220 datasets affirm the suggested approach advantage in comparison with some other basic methods in terms of precision matching and execution time.
Papers List
List of archived papers
مدل یادگیری ماشین برای تشخیص تقلب در کارتهای اعتباری با رویکرد بهینهسازی AUC و تنظیم خودکار ابرپارامترها
محمد مهدی متولی
Design of low-latency Floating-Point units for Softmax Computation in Transformer-based Large Language Models
Hoda Ghabeli - Amir Sabbagh Molahosseini
چارچوب پیشبینی خرابی تطبیقی مبتنی بر شبکه عصبی گراف پویا و GRU در سامانههای صنعتی IIoT
رسول اسماعیلی فرد - لیلا رنجبر
Movable Antenna Design for UAV-Aided Federated Learning via Deep Reinforcement Learning
MOHSEN Ahmadzadeh - Saeid Pakravan - Ghosheh Abed Hodtani
سیستم توصیه گر برای خرید لوازم آرایشی و بهداشتی مبتنی بر الگوریتم جنگل تصادفی
فاطمه رمضانی خوزستانی - مجید رفیعی
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
Omid Mosalmani - Mohammad Javad Rashti - Seyed Enayat Alavi
Distributed coordination protocol for event data exchange in IoT monitoring applications
Behnam Khazael - Hadi Tabatabaee Malazi
more
Samin Hamayesh - Version 42.5.2