0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Transition Cow Index Accuracy through CatBoost-Based Prediction of First Test-Day Milk Yield
Authors :
Hoda Safaeipour
1
Sepehr Ebadi
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
Keywords :
Transition period،machine learning،Transition Cow Index (TCI)،dairy herd management،neural networks،milk yield prediction
Abstract :
Abstract— The transition period in dairy cows, encompassing three weeks pre- and post-calving, represents a critical physiological phase that significantly impacts subsequent milk production and overall herd health. Effective herd management during this period is indirectly assessed via the Transition Cow Index (TCI), which quantifies the deviation between predicted and actual first test-day milk yield. Traditionally, TCI prediction has relied on linear or heuristic statistical methods with limited accuracy and generalizability. In recent years, machine learning (ML) approaches have emerged as powerful alternatives, offering improved precision and robustness in complex agricultural decision-making contexts. This study developed and evaluated ML-based predictive models for first test-day milk yield in subsequent lactations, thereby enabling more reliable TCI computation. A comprehensive dataset from the Vahdat Cooperative Company, Isfahan Province, Iran, comprising 345,676 cow records across 99 herds collected from 2011 to 2022, was utilized. Various ML families—including regression-based models, tree-based ensembles, kernel methods, and neural networks—were comparatively tested, and the CatBoost Tuned model was identified as the best-performing approach. The proposed method demonstrated notable gains in predictive accuracy. Compared with the cooperative’s baseline model (R² ≈ 0.30), the CatBoost Tuned model improved the explained variance to 0.40 and reduced mean absolute error by nearly 10%, from above 7 kg to 6.4 kg per cow. Importantly, when aggregated at the herd level, errors were reduced to below 1.0 kg and R² exceeded 0.86, underscoring the practical utility of the ML-based framework for large-scale TCI benchmarking and herd management optimization.
Papers List
List of archived papers
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
Mohsen Mahmoudi - Fattaneh Taghiyareh - Yasamin Akhavein - Elnaz Ghorbani
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
ارائه یک الگوریتم سلسله مراتبی جهت تشخیص نفوذ در شبکه های کامپیوتری
دکتر باقر رحیم پور کامی - سیدمحمد سیدی برشی باقر رحیم پور کامی - سیدمحمد سیدی برشی -
طراحی و کنترل تطبیقی اورتز رباتیک پایین تنه با استفاده کنترلر منطقی قابل برنامه ریزی و رابط انسان با ماشین
فرهاد عظیمی فر - ستایش کرمی - نیایش امینی
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Improved Weighting in the Automated Texts Classification using Fuzzy Method
Hamidreza Sadrarhami - S. Mohammadali Zanjani - Ghazanfar Shahgholian
سیستم پیشنهاددهنده غذای سالم با استفاده از داده کاوی عادت های تغذیه ای کاربران
محمد عباسی - مریم حسینی پزوه - محمدرضا شمس
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
more
Samin Hamayesh - Version 42.5.2