0% Complete
فارسی
Home
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Transition Cow Index Accuracy through CatBoost-Based Prediction of First Test-Day Milk Yield
Authors :
Hoda Safaeipour
1
Sepehr Ebadi
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
Keywords :
Transition period،machine learning،Transition Cow Index (TCI)،dairy herd management،neural networks،milk yield prediction
Abstract :
Abstract— The transition period in dairy cows, encompassing three weeks pre- and post-calving, represents a critical physiological phase that significantly impacts subsequent milk production and overall herd health. Effective herd management during this period is indirectly assessed via the Transition Cow Index (TCI), which quantifies the deviation between predicted and actual first test-day milk yield. Traditionally, TCI prediction has relied on linear or heuristic statistical methods with limited accuracy and generalizability. In recent years, machine learning (ML) approaches have emerged as powerful alternatives, offering improved precision and robustness in complex agricultural decision-making contexts. This study developed and evaluated ML-based predictive models for first test-day milk yield in subsequent lactations, thereby enabling more reliable TCI computation. A comprehensive dataset from the Vahdat Cooperative Company, Isfahan Province, Iran, comprising 345,676 cow records across 99 herds collected from 2011 to 2022, was utilized. Various ML families—including regression-based models, tree-based ensembles, kernel methods, and neural networks—were comparatively tested, and the CatBoost Tuned model was identified as the best-performing approach. The proposed method demonstrated notable gains in predictive accuracy. Compared with the cooperative’s baseline model (R² ≈ 0.30), the CatBoost Tuned model improved the explained variance to 0.40 and reduced mean absolute error by nearly 10%, from above 7 kg to 6.4 kg per cow. Importantly, when aggregated at the herd level, errors were reduced to below 1.0 kg and R² exceeded 0.86, underscoring the practical utility of the ML-based framework for large-scale TCI benchmarking and herd management optimization.
Papers List
List of archived papers
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
طراحی و کنترل تطبیقی اورتز رباتیک پایین تنه با استفاده کنترلر منطقی قابل برنامه ریزی و رابط انسان با ماشین
فرهاد عظیمی فر - ستایش کرمی - نیایش امینی
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
Optimal control of robotic hand for rehabilitation using fractional order systems and EEG signal processing
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Masoud Shafiee
AI-based Message Spam Classification Framework for Secure Autonomous Vehicles Communication
Riya Upadhyay - Mili Virani - Lakshit Pathak - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
Artificial Empathy in AI-Based Mental Health: A Review
Shabnam Moradi
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
more
Samin Hamayesh - Version 42.5.2