0% Complete
فارسی
Home
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
AI-based Message Spam Classification Framework for Secure Autonomous Vehicles Communication
Authors :
Riya Upadhyay
1
Mili Virani
2
Lakshit Pathak
3
Rajesh Gupta
4
Sudeep Tanwar
5
Hossein Shahinzadeh
6
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
Keywords :
Autonomous Vehicles،Communication،Machine Learning،V2X،Message Spam Classification،5G
Abstract :
With the progress in the field of Autonomous Vehicles (AVs), it becomes crucial to maintain the integrity and security of Vehicle-to-Everything (V2X) communications to further secure safe and reliable transportation. 5G networks serve as the base for these Intelligent Transportation Systems (ITS), but the intervention of spam messages threatens both network efficiency and vehicle safety. This paper thus proposes a Machine Learning (ML)-based spam classification framework which is designed especially for 5G-enabled autonomous vehicle communication systems that helps in the filtering of real time malicious and unwanted messages. Multiple ML classifiers, including Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), and Logistic Regression (LR) have been used in order to detect and neutralize spam traffic across V2X networks. SVM performs best, according to the experimental data, with an accuracy of 0.9476. Without losing the low-latency demands of vehicular communication, it detects spam efficiently. This study discusses challenges associated with this. Our architecture minimizes unwanted traffic while guaranteeing smooth processing of genuine messages. Furthermore, In order to ensure a safer and more effective smart transportation system on 5G networks, this study emphasizes the significance of spam detection in protecting AVs.
Papers List
List of archived papers
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
جانمایی توزیعشده محتوا برای ذخیرهسازی موقت در شبکههای سلولی کوچک با حضور کاربران مخرب
زهرا رشیدی - دکتر وصال حکمی - حانیه سلمانطاهری زهرا رشیدی - وصال حکمی - حانیه سلمانطاهری -
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
مهدی علیرضانژاد - عمار عبیس حسین المعموری
more
Samin Hamayesh - Version 42.3.1