# Decision Support System for Epilepsy

#### Hamid Soltanian-Zadeh, PhD

Professor, Elect. and Comp. Eng., University of Tehran, Iran Senior Scientist, Henry Ford Health System, Michigan, USA Chairman, IEEE Iran Section, Iran







# **Decision Support System (DSS)**

Goal: Enhance decision making

**Issues:** Foundations, functionality, interfaces, implementation, impacts, and evaluations

**Fields:** Decision theory, statistics, computer supported cooperative work, database management, management science, mathematical modeling, operations management, cognitive science, psychology, user-interface management, ...

## **Journal Publications**

- Decision Support Systems (by Elsevier)
- International Journal of Decision Support Systems (by Inderscience)
- Journal of Decision Systems (by Taylor & Francis)
- International Journal of Decision Support System Technology (by IGI Global)
- Journal of Soft Computing and Decision Support Systems (by Penerbit UTM Press)

## Medical DSS & E-Health E's

- 1. Efficiency, decreasing cost
- 2. Enhancing quality of care
- 3. Evidence based
- 4. Empowerment of physicians and patients
- 5. Encouragement of a new relationship between patients and health professionals
- 6. Education of physicians and patients
- 7. Enabling information exchange in a standardized way
- 8. Extending the scope of health care beyond its conventional boundaries
- 9. Ethics
- 10. Equity
- Easy-to-use
- Entertaining
- Exciting

# Epilepsy & Treatment Challenges

- About 1% of population (~ 50 Million individuals) suffer from epilepsy.
- About 35% of epilepsy patients are drugresistant.
- Surgery is a treatment for drug-resistant epilepsy patients.
- Localization of the seizure focus is a prerequisite for surgery.
- About 30% of surgically treated patients don't become seizure-free.

## **Proposed Decision Support System**



# **Medical Imaging**

Noninvasive characterization of tissues, structures, physiological processes, functions, ....

- Magnetic Resonance Imaging (MRI)
- Functional Magnetic Resonance Imaging (fMRI)
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)

## Medical Image Analysis Research

- Improve quality of medical images
- Extract quantitative information for diagnosis, prognosis, and treatment evaluation
  - Segmentation

. . . . . . . .

- Feature extraction
- Clustering/classification
- Database construction

# **Benefits of DSS for Epilepsy**

- Temporal Lobe Epilepsy
  - Avoid Phase II Studies
    - Lateralize Focal TLE
    - Suggest Non-Temporal Lobe Epilepsy
  - Predict Surgery Outcome (Likelihood of Seizure Free)
- Non-Temporal Lobe Epilepsy
  - Identify Insular Epilepsy
  - Lateralize Insular Epilepsy
  - Suggest Non-Focal Epilepsy
  - Predict Surgery Outcome (Likelihood of Seizure Free)

#### Segmentation and Characterization of Hippocampus









## Lateralization of TLE

- Volume of Hippocampus
  - Left vs. Right
  - Lateralization Accuracy < 85%</p>
- Intensity Characteristics of Hippocampus and Other Brain Structures
  - FLAIR
  - SPECT
  - Multi-Modality
  - Multi-Structure

#### Quantitative Analysis of FLAIR and SPECT using T1 MRI



#### **FLAIR Signal in Hippocampus**



#### **SPECT Signal in Hippocampus**



#### FLAIR + SPECT



15

## FLAIR Signal in Multiple Structures

Table 3. Comparison of lateralization accuracy (LA) of mTLE patients based on the FLAIR features of multiple brain structures (extracted using 2 segmentation methods) and 2 classifiers (linear and nonlinear).

| Segmentation Method                      | HAMMER |           | FreeSurfer |           |
|------------------------------------------|--------|-----------|------------|-----------|
| Structures Classifier                    | Linear | Nonlinear | Linear     | Nonlinear |
| Hippocampus                              | 76%    | 87%       | 87%        | 89%       |
| Hippocampus, Amygdala                    | 83%    | 93%       | 84%        | 94%       |
| Hippocampus, Amygdala, Entorhinal Cortex | 80%    | 100%      |            |           |

## **Outcome Prediction**

Table 4. The p-values for correlation between the **hippocampal volume asymmetry** and the **surgical outcome** for a variety of two-class classifications of favorable outcome vs. unfavorable outcome.

| The two classes defined for classification | Engel Class I | Engel Class Ia | Engel Classes Ia-   |
|--------------------------------------------|---------------|----------------|---------------------|
|                                            | (n=78) vs.    | (n=69) vs.     | Ib (n=73) vs. other |
|                                            | Non-Class I   | Non-Class Ia   | Engel Classes       |
|                                            | (n=23)        | (n=32)         | (n=28)              |
| p-value                                    | 0.003         | 0.004          | 0.001               |

## Curvature Analysis of Gray-White Matter Interface in Perisylvian Area



## **Curvature Measures**





Color-coded surface of the gray-white matter interface of an epileptogenic deep perisylvian area (left) and that of a subject without epilepsy (right).

## Peak Percentages for Subjects with and without DPS Epilepsy



20

# Diffusion Tensor Imaging (DTI)



Relative anisotropy (RA), Apparent diffusion Coefficient (ADC), major diffusion vector images.

## **DTI Tractography**



AJNR Am J Neuroradiol 26:2267-2274, October 2005

## **DTI Tractography**



About 3000 fiber trajectories clustered to 25 user-initialized bundles.

# DTI in Perisylvian Epilepsy

#### Insula



## DTI Tractography: Insular Epilepsy vs Control









#### DTI Tractography: Insular Epilepsy vs. Temporal Lobe Epilepsy









#### **Resting State Low Frequency Fluctuations in fMRI**





Resting fMRI time series from cortical regions show strong positive inter-regional correlations subtended by low frequencies.

A "seed voxel" is correlated with all others and thresholded.

#### Preprocessing of Resting State fMRI

- 1. Remove the first few (e.g.,10) time points
- 2. Correct for differences in image acquisition times of slices
- 3. Correct head motion
- 4. Normalize to MNI atlas
- 5. Smooth spatially
- 6. Remove linear tread
- 7. Filter frequency range 0.01–0.08 Hz
- 8. Select top 5% of voxels with largest energy and do the following:
  - Correlation
  - Connectivity
  - Connected component

#### **Resting State fMRI Data**

5 control subjects

7 epileptic patients:

- One patient is seizure-free
- Two patients are not seizure-free
- Four patients are not resected

5 minutes rs-fMRI were acquired using an EPI sequence:

- 34 axial slices, thickness = 3.5 mm
- In-plane resolution =  $64 \times 64$ ; 3.5 mm x 3.5 mm
- TR = 2000 ms, TE = 30 ms, flip angle =  $90^{\circ}$

#### **Correlation Analysis**

Blue=Control, Cyan=Undetermined, Black=Not Seizure-free, Red=Seizure free

















#### **Connectivity Analysis**

Blue=Control, Cyan=Undetermined, Black=Not Seizure-free, Red=Seizure free







#### **Connected Component Analysis**



## Conclusion

- Decision Support Systems are useful in various applications in health and disease.
- 50 million people suffer from epilepsy.
- Epilepsy is a hard to treat disease.
- A DSS may be developed and then used to improve diagnosis, treatment planning, and prognosis of epilepsy.
- Medical image analysis is a fundamental part of an epilepsy DSS.

## Conclusion

- Quantitative analysis of medical images allows noninvasive characterization of brain structures.
- Results of quantitative analysis may be used for lateralization of temporal lobe epilepsy.
- They may also provide indications for ideal outcome after surgery.
- Lots of works have been done but not all used for patient care.
- DSS and e-health technology will allow healthcare to benefit from image analysis results.

## Acknowledgement

- Dr. Kost V. Elisevich, HFHS, USA
- Dr. Brien Smith, HFHS, USA
- Dr. Suresh Patel, HFHS, USA
- Dr. Kourosh Jafari, HFHS, USA
- Dr. Mohammad-Reza Siadat, HFHS, USA
- Dr. Farshad Fotouhi, WSU, USA
- Dr. Abbas Babajani-Feremi, HFHS, USA
- Dr. Amir Ghanei, UM, USA
- •

- Dr. Gholam-Ali Hossein-Zadeh, UT, Iran
- Dr. Alireza Akhundi-Asl, UT, Iran
- Dr. Mohammad Reza Nazem-Zadeh, UT, Iran
- Mr. Mostafa Ghannad-Rezaie, UT, Iran
- Mr. Payam Bahman-Bijari, UT, Iran
- Mrs. Ladan Amini, UT, Iran
- •

Thank you!