
Near-term quantum computers with linear optics

Saleh Rahimi-Keshari

Department of Physics, University of Tehran

School of Nano Science, IPM

1



Quantum mechanics is the greatest scientific achievement in the 20th

century!

A fundamental theory that describes nature at the smallest scales.

Applications: semiconductors, superconducting materials, laser, …



John Preskill: “What are the scientific and technological implications of 

manipulating and controlling complex quantum systems?”

Theory: Quantum control theory, open quantum systems, entanglement theory, 

quantum computational complexity theory, … 

Applications: quantum computation, quantum simulation, quantum communication, 

quantum metrology, …

Quantum information science is a new way of thinking! 
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How can we demonstrate this without a universal quantum computer? 

Quantum supremacy 

Based on computational complexity arguments, it is strongly believed that quantum 

computers can perform certain tasks beyond the power of  classical computers.



Computational complexity 

depends on physical law.
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Polynomial 

time.

Factoring

Quantum 

polynomial time

Hard = not solvable in polynomial-time in the size of the problem (not efficient) 

Computational complexity theory



Shor’s algorithm (1994)

Given N, find its prime factors: N=p x q

Classical Computer Quantum Computer

193 digits in 30 CPU years (2.2 GHz)

500 digits in 1012 CPU years 

Important for public-key cryptography!

193 digits in 0.1 second

500 digits in 2 seconds

John Preskill’s presentation at CSSQI 2012
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Polynomial 

time.

Can we find a problem for demonstration of quantum supremacy with simple 

physical systems and algorithms? 

Quantum 

polynomial time

In principle, yes!

Hard = not solvable in polynomial-time in the size of the problem (not efficient) 

Computational complexity theory

Computational complexity 

depends on physical law.



Quantum sampling problems for demonstrating quantum supremacy

• Hard to simulate classically

• Simple physical realizations

𝒏

#samples

outcomes
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Linear-optical 

network

Classical input 𝐴

Photon counting

Quantum sampler 



Outline:

I. Boson sampling: How quantum physics is different than classical physics, 

and how it can be used to demonstrate quantum supremacy.

II. Randomized boson sampling, and the power of entanglement in secret 

characterization of linear-optical networks.  
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Classical vs boson sampling
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http://www.2physics.com/2013/03/experimental-boson-sampling.html

What is boson sampling? Why is it classically hard to simulate?



Classical sampling
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in complexity theory) [Valiant 1979]. 
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Boson sampling [Aaronson & Arkhipov 2010]





























MMM

M

UU

UUU

UUU

UUUU

U

....

......

......

...

...

..

1

333231

232221

1131211

2

322113312213312312

332112322311332211

|

|

UUUUUUUUU

UUUUUUUUUp





Example:

  2

33

2
3

1

)(, ][Per
3



 

  UA
S i

ii





“1”

“1”

“1”

Linear-

optical 

network

12

Multiplicative approximation of permanents of 

complex matrices is also very difficult (#P-hard) 

[Aaronson & Arkhipov 2013] 

𝑝 − ෤𝑝 ≤ 𝜖𝑝

The transfer matrix
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Example: Hong-Ou-Mandel effect [PRL 1987] 
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Boson Sampling: Sampling from a probability distribution of photon-counting 

events at the output of an M-mode linear-optical network for N input single 

photons (𝑁 ≪ 𝑀) [Aaronson & Arkhipov 2010]. 

Theorem: Modulo two conjectures, sampling from probability distributions that 

are close approximations of the output probability distribution is classically hard, 

unless the polynomial hierarchy collapses to the third level that is highly unlikely.    

N
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equivalent circuit diagram

experiment

photons 3x3 non-polarising fibre BS

2x2 polarising

fibre BS

6x6

fibre polarization

controller
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M. Broome, A. Fedrizzi, S. Rahimi-Keshari., J. Dove, S. Aaronson, T. Ralph, and A. White, 
Science 339, 6121 (2013).

First small-scale experimental demonstration

Visibility =
𝑃dis − 𝑃indis

𝑃dis

Visibility (1,0,1,1,0,0)



The latest boson sampling experiment

H. Wang, et al., Physical Review Letters 123, 250503 (2019).
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Why boson sampling? 

• Simple physical implementations: linear-optical networks are readily available, and in 

principle, it can demonstrate quantum supremacy using 50 photons.

φi

Rie.g.

m=4

• In general, simulation of quantum systems is classically hard. Boson sampling is one of 

few cases that we have strong arguments about the classical hardness of the problem,

through the connection between matrix permanents and probabilities, and we can learn 

a lot from it!

• Other applications have been recently proposed: 

- Cryptography [G. Nikolopoulos, arXiv:1907.01788 (2019)]

[Z. Huang, et al., arXiv:1905.03013 (2019)]  

- Molecular computations [J. Huh, et al., Nature Photonics 9, 615 (2015)]

- Metrology [PRL 114, 170802 (2015)]
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Wave-classical limit of boson sampling 
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| ۧ𝛼1

| ۧ𝛼2

| ۧ𝛼3

| ۧ𝛼𝑀

𝛽1 𝛽2… 𝛽𝑀 = 𝛼1 𝛼2… 𝛼𝑀

𝑈11 𝑈12 …
𝑈21 𝑈22 …
⋮ ⋮ ⋱

Coherent states can be used for characterization of linear-optical networks

[S. Rahimi-Keshari et al., Optics Express 2013] 

Particle-classical limit Boson sampling Wave-classical limit

Coherent state ۧ|𝛼 = 𝑒− 𝛼 2/2 ෍

𝑛=0

∞
𝛼𝑛

𝑛!
ۧ|𝑛

Transfer matrix



Outline:

I. Boson sampling: How quantum physics is different than classical physics, 

and how it can be used to demonstrate quantum supremacy.

II. Randomized boson sampling, and the power of entanglement in secret 

characterization of linear-optical networks.  
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Linear-

optical 

networks

SPDC

SPDC

SPDC

A. Lund, A. Linag, S. Rahimi-Keshari, T. Rudolph, J. O’Brien, and T. Ralph, PRL 113, 

100502 (2014)
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Randomized boson sampling 

uses spontaneous-parametric-down conversion (SPDC) sources

Probability of detecting N single photons: 1 − 𝜒2
𝑀
𝜒2𝑁

1 − 𝜒2 ෍

𝑛=0

∞

𝜒𝑛 ۧ|𝑛, 𝑛
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Probability of detecting N random single photons: 
𝑀
𝑁

1 − 𝜒2
𝑀

𝜒2𝑁 ≃
1

𝑁

Entanglement

𝑁
clicks

Randomized boson sampling 

uses spontaneous-parametric-down conversion (SPDC) sources

1 − 𝜒2 ෍

𝑛=0

∞

𝜒𝑛 ۧ|𝑛, 𝑛

A. Lund, A. Linag, S. Rahimi-Keshari, T. Rudolph, J. O’Brien, and T. Ralph, PRL 113, 

100502 (2014)
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Spontaneous-parametric-down conversion (SPDC) source 

Alice Bob

Laser

s (signal)

i (idler)

Nonlinear 

𝜒(2)crystal

SPDC

Photodetector: ۧ|𝑛

Heterodyne: ۧ|𝛼

Number state: ۧ|𝑛

Coherent state: ۧ|𝜒𝛼∗

If Alice doesn’t tell anything, Bob’s state: 𝜌𝐵 = 1 − 𝜒2 ෍

𝑛=0

∞

𝜒2𝑛 ۧ|𝑛 |𝑛ۦ

Thermal state!

1 − 𝜒2 ෍

𝑛=0

∞

𝜒𝑛 ۧ|𝑛, 𝑛 0 < 𝜒 < 1



LON

SPDC

SPDC

SPDC

S. Rahimi-Keshari, S. Baghbanzadeh, and C. M. Caves, arXiv:1909.00827 (2019). 

1

2

𝑀

BobAlice
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Computational Runs: Alice uses photon-counting measurements and samples

from a classically hard joint probability distribution

𝑃RBS 𝒏𝐴, 𝒏𝐵 = 𝑃 𝒏𝐴 𝒏𝐵 𝒰LON 𝒏𝐴
2

Classical channel

In situ and secret characterization of linear-optical

Randomized boson sampling as a distributed task between two parties:



LON

SPDC

SPDC

SPDC

1

2

𝑀

BobAlice
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Characterization Runs: Alice uses heterodyne measurements and by sampling from

𝑃C 𝜶, 𝒏𝐵 = 𝑃 𝜶 𝒏𝐵 𝒰LON 𝜶 2 = 𝑃 𝜶 𝒏𝐵 𝜶 𝑼 2

she converts the experiment to a problem to a classically simulable problem that enables 
the characterization of the LON on the fly without Bob’s knowing!

𝛼𝑀

ۧ|𝜒𝛼1
∗

ۧ|𝜒𝛼2
∗

ۧ|𝜒𝛼𝑀
∗

𝛼2

𝛼1

S. Rahimi-Keshari, S. Baghbanzadeh, and C. M. Caves, arXiv:1909.00827 (2019). 

In situ and secret characterization of linear-optical

Randomized boson sampling as a distributed task between two parties:
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1

2
෍

𝑛𝐴,𝑛𝐵

𝑃 𝑛𝐴, 𝑛𝐵 |𝑈 − 𝑃(𝑛𝐴, 𝑛𝐵 |𝐿) ≤ 1 −
1 − 𝜒2 2𝑀

det 𝐼 − 𝜒2𝐿𝑈† 2
≤ 𝜖

Having characterized Bob’s LON, Alice can assess the validity of the 

experiment!

Bob

𝐹 𝜌𝐴𝐵|𝑈, 𝜌𝐴𝐵|𝐿 =
1 − 𝜒2

𝑀

det 𝐼 − 𝜒2𝐿𝑈†

Alice can determine whether samples are drawn from a probability distribution 

close enough to the desired, ideal distribution! 

U

SPDC

SPDC

SPDC

Alice

𝜌𝐴𝐵|𝑈

Ideal

L

SPDC

SPDC

SPDC

Alice

𝜌𝐴𝐵|𝐿

Lossy

Bob
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Summary

- Boson sampling: The problem of sampling from the output probability distribution

of linear-optical networks for input single photons. Simple realization but classically 

hard and can demonstrate quantum supremacy! 

- Open question: Verification of boson sampling in the presence of errors? 

Thank you for your attention!

- Randomized boson sampling and a novel application of entanglement that can 

be used for other protocols as well.
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