

How to Protect Cyber-Physical Systems against Malicious Intruders?

General Detection and Compensation Strategies

Sayad Haghighi

PhD, SMIEEE, Head of the IT Department & Assistant Professor University of Tehran

Email sayad@ut.ac.ir

CPS vs loT

Agenda

Cyber Physical System & Networked Control Systems

Adversarial Model & Covert Attacks

1st Example: Covert Attack on DC Motor

2nd Example: Covert Attack on Cruise Control

3rd Example: DoS Attack on Rotary Gantry

Cyber Physical System Security Model

We are creating a model to detect, characterize, and react to attacks in **networked control systems**. In the 1st example, we are focusing on the feed-forward link only.

1x under development

Regarding the Adversarial Model

Plant Example : DC Motor

Normal Operation of the Plant

Covert Service Degradation Attacks (#1)

Covert Service Degradation Attacks (#2)

10

A General Approach for IDS Construction

- An Identifier learns the plant in the initial safe period.
 - Alternatively, we can use the plant model.
- Then, the learning finishes and it starts estimating the output
 (y) with each issued input (u).
- Intrusion is detected when the model output significantly deviates from the system output.

Compensation in Forward-link Attacks

- In covert SD attacks, the attacker has identified the plant and the controller:
 - In the first attempt, we tried to compensate FW-link attacks.
 - A model-free compensating robust controller replaces the identified controller upon IDS alarm.
 - The attacker hasn't learnt the 2nd controller.

The Simulation Model

Detection & Compensation Results

Okay, what if the controller itself is attacked?

Covert Attack Scenarios

Type 1: Temporally reducing the relative distance to lower than the safe distance, perhaps at a desired time.

Type 2: Reducing the relative distance to permanently stay slightly lower than the safe distance.

Attack Detection & Compensation of Malicious Attacks on ACC

Adaptive Cruise Control System

Attack Detection of Covert Attacks (Type 1 & 2) on ACC

Attack Compensation of (Type 1) Covert Attack on ACC

Attack Compensation of (Type 2) Covert Attack on ACC

DoS Attack in the Network Links

- Sometimes the attacker cannot compromise the keys. But can create a DoS attack that prevents control and sensor packets to be delivered.
- We are working on DoS-resilient controllers too.

Rotary Gantry Crane Plant

Networked Intelligent-Classic Control System

The Soft-Switched Hybrid Controller:

 $U(t) = \Lambda_1 U_{(1)}(t) + \Lambda_2 U_{(2)}(t)$ $\dot{e_{ heta}}$ **CLASSIC (SMC)** NN e_{θ}

Resistance to DoS (80% loss in FW Link)

Quanser Test Plant

Thank you

www.ANSLab.org sayad@ieee.org